Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 857-864    DOI: 10.11901/1005.3093.2019.223
ARTICLES Current Issue | Archive | Adv Search |
Effect of Polyamide 650 on Ring-opening Polymerization of Benzoxazine and Performance of Polybenzoxazine
ZHU Yongfei(),LI Peilin,SU Junming,YU Shujuan
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials of Nanning Normal University, Nanning 530001, China
Cite this article: 

ZHU Yongfei,LI Peilin,SU Junming,YU Shujuan. Effect of Polyamide 650 on Ring-opening Polymerization of Benzoxazine and Performance of Polybenzoxazine. Chinese Journal of Materials Research, 2019, 33(11): 857-864.

Download:  HTML  PDF(4462KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mixtures of polyamide 650 (O-PA) and benzoxazine were prepared to investigate the effect of O-PA on the ring-opening polymerization (ROP) of benzoxazine and the toughness of polybenzoxazine, while the ROP process of O-PA/benzoxazine mixtures was monitored by means of gelation time measurement, DSC and FTIR. The results show that O-PA could accelerate the ROP reaction of benzoxazine resulting in remark decrease of the gelation time, initial and peak temperatures of ROP of benzoxazine. However, the structures evolution during the ROP process of benzoxazine and chemical structures of polybenzoxazine hardly changed with the incorporation of O-PA. The toughness of polybenzoxazine increased obviously with the addition of O-PA. The addition of O-PA made the thermal stability of polybenzoxazine decrease a little. Thereby, polyamide 650 is a kind of excellent catalysis for benzoxazine.

Key words:  organic polymer materials      benzoxazine      polyamide 650      ring-opening polymerization      toughness      thermal stability     
Received:  30 April 2019     
ZTFLH:  TQ323  
Fund: Natural Science Foundation of Guangxi Autonomous Region(2018GXNSFAA138057)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.223     OR     https://www.cjmr.org/EN/Y2019/V33/I11/857

SampleBa5Ba10Ba15Ba20BaPa5Pa10Pa15Pa20PaPddm5Pddm10Pddm15Pddm20Pddm
tgel/s5000140967746950010434893122061861410307198150119
Table 1  Effect of O-PA on the gelation time of Ba (160℃), Pddm (170℃) and Pa (180℃)
Fig.1  DSC curves of O-PA/benzoxazine (a) O-PA/Ba; (b) O-PA/Pa; (c) O-PA/Pddm
Ba5Ba10Ba15Ba20BaPa5Pa10Pa15Pa20PaPddm5Pddm10Pddm15Pddm20Pddm
Ti/℃156.8107.1104.9104.898.3177.0149.0143.1136.3127.8178.3133.8116.492.469.5
Tp/℃227.8218.7218.9221.0219.7220.1207.1198.8195.4194.2226.3217.1214.0218.0214.6
ΔH/J·g-1342.7361.4388.3328.0284.3373.1417.1343.8300.9304.7347.4363.6311.6338.2300.8
Table 2  DSC results of O-PA/Pa, O-PA/Ba and O-PA/Pddm mixtures
Fig.2  Interaction between O-PA and benzoxazine or polybenzoxazine
Fig.3  FTIR spectra of Ba (a) and 10Ba (b) at the different cured stages
Fig.4  DSC curves of Ba (a) and 10Ba (b) for the different heating rate
Fig.5  Kissinger (a) and Ozawa (b) fitting curves of Ba and 10Ba
Fig.6  FTIR spectra of PBa and the cured O-PA/Ba
Fig.7  Effect of O-PA on the impact strength of polybenzoxazine
Fig.8  Effect of O-PA on the thermal stability of PBa (a) TGA curves; (b) DTG curves
SamplePBa5PBa10PBa15PBa20PBaPPddm5PPddm10PPddm15PPddm20PddmPPa5PPa10PPa15PPa20PPa
T5%/℃218.6194.6180.1188.6205.5300.4190.7228.9247.9255.6205.0165.1142.3206.8158.0
T10%/℃313.8292.2281.3281.6283.9358.3328.5327.2320.1310.7315.9302.9289.7314.8294.9
CY/%22.918.215.913.812.337.331.427.525.523.529.225.924.522.520.4
Table 3  TGA results of the effect of O-PA on the thermal stability of polybenzoxazine
Fig.9  TGA results of the cured O-PA/benzoxazineO-PA/PPddm (a) and O-PA/PPa (b)
[1] Li X Y, Zhao S P, Hu W H, et al. Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2 [J]. Appl. Surf. Sci., 2019, 481: 374
[2] Shen X B, Cao L J, Liu Y, et al. How does the hydrogen bonding interaction influence the properties of polybenzoxazine? An experimental study combined with computer simulation [J]. Macromolecules, 2018, 51: 4782
[3] Shan F, Ohashi S, Erlichman A, et al. Non-flammable thiazole-functional monobenzoxazines: synthesis, polymerization, thermal and thermomechanical properties, and flammability studies [J]. Polymer, 2018, 157: 38
[4] Martos A, Sebastián R M, Marquet J. Studies on the ring-opening polymerization of benzoxazines: Understanding the effect of the substituents [J]. Eur. Polym. J., 2018, 108: 20
[5] Gao S, Liu Y, Feng S Y, et al. Synthesis of borosiloxane/polybenzoxazine hybrids as highly efficient and environmentally friendly flame retardant materials [J]. J. Polym. Sci., 2017, 55A: 2390
[6] Jin Q F, Jiang D Y, Tong L N, et al. Simultaneously toughening and reinforcing modification of benzoxazineresin with hyperbranched epoxy [J]. Chin. J. Mater. Res., 2017, 31: 145
[6] (靳奇峰, 姜冬月, 佟丽娜等. 超支化环氧树脂增韧增强苯并噁嗪树脂 [J]. 材料研究学报, 2017, 31: 145)
[7] Suda A, Yamashita H, Endo T. Ring-opening polymerization of 1, 3-benzoxazines by p-toluenesulfonates as thermally latent initiators [J]. J. Polym. Sci., 2011, 49A: 3631
[8] Wang B, Yang P, Li Y Q, et al. Blends of polybenzoxazine/poly (acrylic acid): hydrogen bonds and enhanced performances [J]. Polym. Int., 2017, 66: 1159
[9] Zhang S, Ran Q C, Fu Q, et al. Controlled polymerization of 3,4-dihydro-2H-1,3-benzoxazine and its properties tailored by Lewis acids [J]. React. Funct. Polym., 2019, 139: 75
[10] Bao H, Zhang Y, Tang H M, el et. Study on the structure and properties of bisphenol A-type benzoxazine resins catalyzed by organotin oligomersesquioxanes [J]. Acta Polym. Sin., 2019, 50: 55
[10] (包 涵, 张 月, 唐慧敏等. 有机锡低聚倍半硅氧烷催化固化双酚A型苯并噁嗪树脂结构与性能研究 [J]. 高分子学报, 2019, 50: 55)
[11] Zhang K, Han L, Froimowicz P, et al. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability [J]. Macromolecules, 2017, 50: 6552
[12] Yue J, Zhao C X, Dai Y X, et al. Catalytic effect of exfoliated zirconium phosphate on the curing behavior of benzoxazine [J]. Thermochim. Acta, 2017, 650: 18
[13] Kocaarslan A, Kiskan B, Yagci Y. Ammonium salt catalyzed ring-opening polymerization of 1,3-Benzoxazines [J]. Polymer, 2017, 122: 340
[14] Sun J Q, Wei W, Xu Y Z, et al. A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties [J]. RSC Adv., 2015, 5: 19048
[15] Zhao Y T, Rao Q H, Zhang H L. Research progress of polyamide and cardanol modified amine curing agents for epoxy resin [J]. Thermoset. Resin, 2017, 32(2): 48
[15] (赵宇泰, 饶秋华, 张海浪. 聚酰胺及腰果酚改性胺环氧固化剂的研究进展 [J]. 热固性树脂, 2017, 32(2): 48)
[16] Wang M W, Jeng R J, Lin C H. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors [J]. Macromolecules, 2015, 48: 530
[17] Wang Y N, Niu X R, Xing X L, et al. Curing behaviour and properties of a novel benzoxazine resin via catalysis of 2-phenyl-1,3,2-benzodioxaborole [J]. React. Funct. Polym., 2017, 117: 60
[18] Zhang D, Yue J, Li H, et al. Curing kinetics study of benzoxazine using diaryliodonium salts as thermal initiators [J]. Thermochim. Acta, 2016, 643: 13
[19] Zhu Y F, Gu Y. Effect of La2O3 on the thermal stability of polybenzoxazines based on bisphenol-A and p-chlorophenol [J]. Polym. Mater. Sci. Eng., 2014, 30(3): 43
[19] (朱永飞, 顾 宜. La2O3对双酚A和对氯苯酚型聚苯并噁嗪热稳定性的影响 [J]. 高分子材料科学与工程, 2014, 30(3): 43)
[1] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[6] WANG Kun, YANG Renxian, Cai Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Effects of Trace Ce on Mechanical Properties of a Ferritic/Martensitic Heat Resistant Steel Containing High Cr and Co[J]. 材料研究学报, 2022, 36(4): 261-270.
[7] LIU Ming, WU Jianan. Scratch Behavior of Materials under Progressive Load by Conical Indenter[J]. 材料研究学报, 2022, 36(3): 191-205.
[8] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[9] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[10] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[11] GAO Ye, REN Jiakuan, LI Zhifeng, CUI Cong, CHEN Jun, LIU Zhenyu. Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel[J]. 材料研究学报, 2022, 36(1): 21-28.
[12] LI Ruiy, XIE Min, ZHANG Yonghe, PEI Xun, LIU Yang, SONG Xiwen. Physical Properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 Ceramic Materials[J]. 材料研究学报, 2022, 36(1): 49-54.
[13] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[14] ZHU Gaowen, WU Dong, LU Shanping. Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel[J]. 材料研究学报, 2021, 35(7): 481-492.
[15] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
No Suggested Reading articles found!