Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 865-873    DOI: 10.11901/1005.3093.2019.218
ARTICLES Current Issue | Archive | Adv Search |
Effects of Micron Al2O3 Filler on Flexural Strength and High-temperature Microwave Absorbing Properties of SiCf/BN/SiC Composites
MU Yang(),LI Hao
Department of Avionics, Chinese Flight Test Establishment, Xi’an 710089, China
Cite this article: 

MU Yang,LI Hao. Effects of Micron Al2O3 Filler on Flexural Strength and High-temperature Microwave Absorbing Properties of SiCf/BN/SiC Composites. Chinese Journal of Materials Research, 2019, 33(11): 865-873.

Download:  HTML  PDF(9289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of SiCf/BN/SiC with micron Al2O3 filler were fabricated via precursor infiltration and pyrolysis method (PIP), and then their flexural strength, high-temperature dielectric and microwave absorbing properties were investigated. Results show that as the filler content increases from 5% to 20% the flexural strength of SiCf/BN/SiC composites increases firstly and then degrades, and the maximum strength can reach 295 MPa. The real part and imaginary part of the complex permittivity of the composites increase with the rising temperature. Due to the introduction of Al2O3 filler the values and increasing range of the high-temperature complex permittivity can be significantly decreased with the rising temperature. The composites without filler show poor room- and high-temperature reflection loss (RL), however when the composite possesses 20% Al2O3 filler, the room-temperature RL values can be decreased to below -8 dB in the whole X band and its applicable thickness can expand to 3.0~3.5 mm. The RL values can reach -5~-8 dB at 700℃ for the composite with 20% Al2O3 filler of 3.0mm in thickness. The introduction of Al2O3 filler enhances the design margin for the practical application.

Key words:  composite      SiCf/BN/SiC      PIP method      Al2O3 filler      flexural strength      high-temperature microwave absorbing     
Received:  27 April 2019     
ZTFLH:  TB34  
Fund: National Natural Science Foundation of China(51502236)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.218     OR     https://www.cjmr.org/EN/Y2019/V33/I11/865

Fig.1  Schematic diagram of the testing equipment for high-temperature complex permittivity
Al2O3 filler contentPorosity/%Density/g·cm-3Flexural strength/MPaFailure displacement/mm
(a) 013.62.10238±60.32±0.03
(b) 5%13.62.33250±50.40±0.03
(c) 10%13.72.36295±60.45±0.03
(d) 15%14.12.34220±90.34±0.03
(e) 20%14.42.36187±80.27±0.03
Table 1  Properties of SiCf/BN/SiC composites with various Al2O3 contents
Fig.2  Stress-displacement curves of SiCf/BN/SiC composites with various Al2O3 contents
Fig.3  Fracture surface morphologies of SiCf/BN/SiC composites with various Al2O3 contents (a) and (b) 5% Al2O3; (c) and (d) 10% Al2O3; (e) and (f) 15% Al2O3; (g) and (h) 20% Al2O3
Fig.4  Morphologies of SiC matrix with various Al2O3 contents (a) without Al2O3; (b) 5% Al2O3; (c) 10% Al2O3; (d) 15% Al2O3; (e) 20% Al2O3
Fig.5  Effects of Al2O3 contents on complex permittivity of SiCf/BN/SiC composites (a) real part; (b) imaginary part
Fig.6  Reflection loss of SiCf/BN/SiC composites with different Al2O3 contents when t=3.0 mm (a) and with Al2O3 content of 10% (b), 15% (c) and 20% (d) at various thicknesses
Fig.7  Effects of different temperatures on complex permittivity of SiCf/BN/SiC composites with 10% Al2O3 (a) real part; (b) imaginary part
Fig.8  Effects of different temperatures on complex permittivity of SiCf/BN/SiC composites with 20% Al2O3 (a) real part; (b) imaginary part
Fig.9  Effects of different temperatures on reflection loss of SiCf/BN/SiC composites when t=3.0 mm. (a) 10% Al2O3; (b) 20% Al2O3
[1] Liu Y, Luo F, Zhou W C, et al. Dielectric and microwave absorption properties of Ti3SiC2 powders [J]. J. Alloys Compd., 2013, 576: 43
[2] Liu H T. Design, preparations and properties of the SiCf/SiC radar absorbing materials with sandwich structures [D]. Changsha: National University of Defense Technology, 2010
[2] (刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究 [D]. 长沙: 国防科学技术大学, 2010)
[3] Liu H T, Tian H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process [J]. J. Eur. Ceram. Soc., 2012, 32: 2505
[4] Liu H T, Tian H, Cheng H F. Dielectric properties of SiC fiber-reinforced SiC matrix composites in the temperature range from 25 to 700℃ at frequencies between 8.2 and 18 GHz [J]. J. Nucl. Mater., 2013, 432: 57
[5] Li Q. Electromagnetic absorbing properties and its optimization of PDCs-SiC(N) ceramics and composites [D]. Xi’an: Northwestern Polytechnical University, 2015
[5] (李 权. PDCs-SiC(N)陶瓷及其复合材料的电磁吸波特性及优化 [D]. 西安: 西北工业大学, 2015)
[6] Ding D H, Shi Y M, Wu Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase [J]. Carbon, 2013, 60: 552
[7] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
[8] Mu Y, Li H, Liu Y Q, et al. Effects of low-temperature pre-oxidization on dielectric properties of PIP-SiCf/SiC composites [J]. Mater. Rep., 2017, 30(S2): 129
[8] (穆 阳, 李 皓, 刘宇清等. 低温预氧化对PIP-SiCf/SiC复合材料介电性能的影响 [J]. 材料导报, 2017, 30(S2): 129)
[9] Ding D H, Luo F, Shi Y M, et al. Influence of thermal oxidation on complex permittivity and microwave absorbing potential of KD-I SiC fiber fabrics [J]. J. Eng. Fiber. Fabr., 2014, 9(2): 99
[10] Wan F, Luo F, Wang H Y, et al. Effects of carbon black (CB) and alumina oxide on the electromagnetic- and microwave-absorption properties of SiC fiber/aluminum phosphate matrix composites [J]. Ceram. Int., 2014, 40: 15849
[11] Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance [J]. Powder Technol., 2013, 237: 309
[12] Zhou Y, Zhou W C, Luo F, et al. Effects of dip-coated BN interphase on mechanical properties of SiCf/SiC composites prepared by CVI process [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1400
[13] Liu T. Study on microwave equivalent parameters of electromagnetic wave absorption composite [D]. Chengdu: University of Electronic Science and Technology of China, 2010
[13] (刘 涛. 电磁波吸收复合物微波等效参数研究 [D]. 成都: 电子科技大学, 2010)
[14] Dou Y K, Li J B, Fang X Y, et al. The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC [J]. Appl. Phys. Lett., 2014, 104: 052102
[15] Song H H, Zhou W C, Luo F, et al. Temperature dependence of dielectric properties of SiCf/PyC/SiC composites [J]. Mater. Sci. Eng., 2015, 195B: 12
[16] Wang H Y, Zhu D M, Wang X F, et al. Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites [J]. Composites, 2017, 93A: 10
[17] Mu Y, Li H, Deng J X, et al. Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process [J]. J. Alloys Compd., 2017, 724C: 633
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!