Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (4): 299-305    DOI: 10.11901/1005.3093.2018.625
Current Issue | Archive | Adv Search |
Influence of Oxide Film on Fatigue Property of Friction Stir Welded 6082 Al Alloy
Xinmeng ZHANG1,Guangzhong HE1,Beibei WANG2,3,Chao YANG2,Peng XUE2(),Dingrui NI2,Zongyi MA2
1. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, Northeast University, Shenyang 110819, China
Cite this article: 

Xinmeng ZHANG,Guangzhong HE,Beibei WANG,Chao YANG,Peng XUE,Dingrui NI,Zongyi MA. Influence of Oxide Film on Fatigue Property of Friction Stir Welded 6082 Al Alloy. Chinese Journal of Materials Research, 2019, 33(4): 299-305.

Download:  HTML  PDF(17370KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The polished and as received 6082-T6 Al sheets of 6 mm in thickness were subjected to friction stir welding (FSW) aiming to revealthe effect of surface oxide film on the microstructure and fatigue property of the FSW joint. The results show that high quality FSW joints with a high joint strength coefficient of 81% could be produced by a high welding speed of 1000 mm/min, for the unpolished and polished butt surfaces. Similar fatigue properties were obtained for the two type of FSW joints with the above two surface states, and the fatigue strength was 100 MPa. Most weld joints failed at the heat affected zones, and only a few weld joints failed at the nugget zone (NZ) during fatigue tests. The fatigue strength increased to 110 MPa for the NZ for plates with the above two surface states, and it is revealed during fatigue test that the fatigue cracks did not initiate on and propagate along the so called“S-line”.

Key words:  metallic materials      Al alloys      friction stir welding      oxide film      fatigue property     
Received:  22 October 2018     
ZTFLH:  TG457  
Fund: National Natural Science Foundation of China(51331008)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.625     OR     https://www.cjmr.org/EN/Y2019/V33/I4/299

MaterialMgSiFeCuMnCrZnTiAl
6082Al0.6-1.20.7-1.30.50.10.4-1.00.250.20.1Bal.
Table 1  Chemical composition of 6082Al alloy (mass fraction, %)
Fig.1  Macrostructure of various FSW joints with unpolished butt surface (a) and polished butt surface (b) (NZ—nugget zone, TMAZ—thermo-mechanically affected zone, HAZ—heat-affected zone)
Fig.2  Microhardness profiles of the FSW joints of 6082 Al alloys with different butt surface treatment methods
Samples

Yield strength

/MPa

Ultimate tensile strength/MPa

Elongation

/%

Fatigue strength

/MPa

Base material29332412.9180
Unpolished surfaceJoint1702627.4100
NZ20026926.5110
Polished surfaceJoint1722627.1100
NZ20427223.5110
Table 2  Tensile and fatigue properties of the FSW joint of 6082-T6 Al alloy and the NZ
Fig.3  S-N curves of the FSW joints of 6082 Al alloys with (a) unpolished butt surfaces, (b) polished butt surfaces
Fig.4  Cross-sectional macrostructures of the FSW joints with unpolished butt surfaces (a) failed at HAZ, (b) failed at NZ
Fig.5  Typical morphologies of the fractured surfaces of the FSW joint failed at the HAZ with unpolished butt surface (a) macrostructure, (b) crack initiation zone, (c) crack propagation zone, (d) fast fracture zone
Fig.6  Typical morphologies of the fractured surfaces of the FSW joint failed at the NZ with unpolished butt surface (a) macrostructure, (b) crack initiation zone, (c) crack propagation zone, (d) fast fracture zone
Fig.7  S-N curves of the NZs withunpolished butt surfaces (a) and polished butt surfaces (b)
Fig.8  Cross-sectional macrostructures of NZ after fatigue tests with unpolished butt surface
Fig.9  Typical morphologies of the fractured surfaces of the NZ with unpolished butt surface (a) macrostructure, (b) crack initiation zone, (c) crack propagation zone, (d) fast fracture zone
[1] MishraR S, MaZ Y , Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, 50R: 1
[2] WangK S, ZhangX L, WangX H, et al. Comparison of fatigue properties between friction stir welds and TIG welds for Al alloy [J]. Chin. J. Mater. Res., 2009, 23: 1
[2] (王快社, 张小龙, 王训宏等. 搅拌摩擦与氩弧焊铝合金接头疲劳性能比较 [J]. 材料研究学报, 2009, 23: 1)
[3] XueP, ZhangX X, WuL H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
[3] (薛 鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222)
[4] ZhouC Z, YangX Q, LuanG H. Effect of oxide array on the fatigue property of friction stir welds [J]. Scripta Mater., 2006, 54: 1515
[5] JoluT L, MorgeneyerT F, Gourgues-LorenzonA F. Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy [J]. Sci. Technol. Weld. Joining, 2010, 15: 694
[6] ZengX H, XueP, WangD, et al. Effect of processing parameters on plastic flow and defect formation in friction-stir-welded aluminum alloy [J]. Metall. Mater. Trans., 2018, 49A: 2673
[7] SatoY S, YamashitaF, SugiuraY, et al. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy [J]. Scripta Mater., 2004, 50: 365
[8] RenS R, MaZ Y, ChenL Q. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2008; A479: 293
[9] LiuX Q, LiuH J, WangT H, et al. Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces [J]. J. Mater. Sci. Technol., 2018, 34: 105
[10] WangG Q, ZhaoY H, HaoY F. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing [J]. J. Mater. Sci. Technol., 2018, 34: 73
[11] WangB B, ChenF F, LiuF, et al. Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling [J]. J. Mater. Sci. Technol., 2017, 33: 1009
[12] WangX J, WeiX L, ZhangL L. Microstructural evolution and mechanical properties of friction stir welded 6082-T6 aluminum alloy [J]. Trans. China Weld. Inst., 2018, 39: 1
[12] (王希靖, 魏学铃, 张亮亮等. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能 [J]. 焊接学报, 2018; 39: 1)
[13] ScialpiA,De FilippisL A C,CavaliereP. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy [J]. Mater. Des., 2007, 28: 1124
[14] LiuF C, MaZ Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy [J]. Metall. Mater. Trans., 2008, 39A: 2378
[15] WangC, WangB B, WangD, et al. High-speed friction stir welding of SiCp/Al-Mg-Si composite [J]. Acta Metall. Sin. (Engl. Lett.), 2018,
[16] WangC, WangB B, XueP, et al. Fatigue behavior of friction stir welded SiCp/6092Al composite [J]. Acta Metall. Sin., 2018, Doi 10.11900/0412.1961.2018.00220
[16] (王 晨, 王贝贝, 薛 鹏等. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究 [J]. 金属学报, 2018; Doi 10.11900/0412.1961.2018.00220)
[17] WuC S, SuH, ShiL. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding [J]. Acta Metall. Sin., 2018, 54: 265
[17] (武传松, 宿 浩, 石 磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟 [J]. 金属学报, 2018, 54: 265)
[18] WangH L, ZengX H, ZhangX M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chin. J. Mater. Res., 2018; 32: 473
[18] (王洪亮, 曾祥浩, 张欣盟等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018; 32: 473)
[19] LiY J, FuR D, LiY, et al. Tensile properties and fracture behavior of friction stir welded joints of Fe-32Mn-7Cr-1Mo-0.3N steel at cryogenic temperature [J]. J. Mater. Sci. Technol., 2018; 34: 157
[20] ChenF F, HuangH J, XueP, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials [J]. Chin. J. Mater. Res., 2018, 32: 1
[20] (陈菲菲, 黄宏军, 薛 鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018; 32: 1)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!