Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 117-123    DOI: 10.11901/1005.3093.2018.548
Current Issue | Archive | Adv Search |
Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys
Gaiming LI1,2,4,5,Siyu LIU1,2,4,5,Desong ZHAN1,2,4,5(),Rui LIU3,Ling REN3,Ke YANG3,Jingren WANG1,2,4,5,Qiang WANG1,2,4,5
1. Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2. Liaoning Institute of Dental Research, Shenyang 110002, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4. Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
5. Liaoning Province Oral Diseases Translation Medcicne Research Center, Shenyang 110002, China
Cite this article: 

Gaiming LI,Siyu LIU,Desong ZHAN,Rui LIU,Ling REN,Ke YANG,Jingren WANG,Qiang WANG. Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys. Chinese Journal of Materials Research, 2019, 33(2): 117-123.

Download:  HTML  PDF(10477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 3D printing medical titanium alloys Ti-6Al-4V and Ti-6Al-4V-5Cu were prepared by selective laser melting technology (SLM), and their antibacterial properties were assessed by plate co-culture method. The in vitro biocompatibility with the mouse embryonic osteogenic precursor cells (MC3T3-E1) of the prepared alloys was systematically investigated by means of methods of CCK8 cell proliferation assay, phalloidin cytoskeleton staining and Annexin-V/PI flow cytometry. The results show that the 3D printing Ti-6Al-4V-5Cu alloy has high antibacterial property and the antibacterial rate against Staphylococcus aureus is 57.03%. The alloy Ti-6Al-4V-5Cu performed well with better in vitro biocompatibility during the three assessments,namely,CCK8 cell proliferation toxicity assay, cytoskeleton phalloidin staining experiment and Annexin-V/PI double labeling flow analysis.

Key words:  metallic materials      3D printing      SLM      Ti-6Al-4V-5Cu      antibacterial      biocompatibility     
Received:  10 September 2018     
ZTFLH:  R318  
Fund: Supported by National Key Research and Development Plan(2018YFC1106601);National Natural Science Foundation of China(51631009)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.548     OR     https://www.cjmr.org/EN/Y2019/V33/I2/117

AlloyAlVCuFeCNOHTi
Ti-6Al-4V6.013.970.010.020.010.0010.030.001Bal.
Ti-6Al-4V-5Cu6.063.754.850.060.010.0020.050.001Bal.
Table 1  Composition of two titanium alloys (%, mass fraction)
CTGRGR/%Toxicity
0≥100No
175~99No
250~74Slightly
325~49Midrange
40~24Obvious
Table 2  Classification standard of cytotoxicity
Fig.1  Antimicrobial effects of three Titanium Alloys against staphylococcus aureus (a, b) TC4-5Cu group (staphylococcus aureus); (c, d) TC4-c group (staphylococcus aureus); (e, f) tc4 group (staphylococcus aureus)
GroupS. aureus
Colony meanSterilizing rate
TC4-5Cu113±4.08(57.03±1.55)%
TC4237±11.91-
tc4263±6.05-
Table 3  Treatment of antibacterial rate of staphylococcus aureus with different kinds of titanium alloys (n=4)
Fig.2  OD values of MC3T3-E1 cells measured by CCK-8 cell proliferation assay
Co-culture time/dRGR/%
TC4-5CuTC4tc4
199.4±1.5889.3±4.21100±2.16
3110±6.79101±15.33100±4.79
7103.6±10.1998.9±8.30100±5.49
Table 4  Relative growth rate (RGR) of three titanium alloys on MC3T3-E1 cells
Fig.3  Co-culture of MC3T3-E1 cells on the surface of three titanium alloys for 4 h and 24 h rhodamine phalloidin backbone staining. 4 h: (a1) TC4-5Cu group; (b1) TC4 group; (c1) tc4 group; 24 h: (a2) TC4-5Cu group; (b2) TC4 group; (c2) tc4 group
Fig.4  Co-culture of MC3T3-E1 cells on titanium alloys for 72 h flow scatter and bar graph statistical analysis (a) TC4-5Cu group; (b) TC4 group; (c) tc4 group; (d) normal cell viability; (e) apotoic cell viability
[1] Yan T F. The current situation and developmental trend of biomedical materials [J]. China Med. Dev. Inf., 2006, 12(5): 1
[1] (奚廷斐. 生物医用材料现状和发展趋势 [J]. 中国医疗器械信息, 2006, 12(5): 1)
[2] Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250
[3] Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis [J]. Clin. Oral. Implants Res., 2012, 23 Suppl 6: 67
[4] Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis [J]. Sci. Rep., 2016, 6: 29985
[5] Cacciotti I, Bianco A. High thermally stable Mg-substituted tricalcium phosphate via precipitation [J]. Ceram. Int., 2011, 37: 127
[6] Kalita S J, Bhatt H A. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization [J]. Mater. Sci. Eng., 2007, 27C: 837
[7] Wu C T, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties [J]. Biomaterials, 2007, 28: 3171
[8] Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197
[9] Ma Z, Ren L, Yang K, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy [J]. J. Mater. Sci. Technol., 2015, 31: 723
[10] Ren L, Li M, Zhang Y, et al. Antibacterial properties of Ti-6Al-4V-xCu alloys [J]. J. Mater. Sci. Technol., 2014, 30: 699
[11] Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants [J]. Biomaterials, 2015, 44: 36
[12] Zhang B, Huang Q R, Gao Y, et al. Preliminary study on some properties of Co-Cr dental alloy formed by selective laser melting technique [J]. Wuhan Univ. J. Technol. Mater., 2012, 27: 665
[13] Huang W Y, Jiang M Z, Zhan D S. Single crown restoration with 3 shape Trios scanner and 3D printing technology [J]. Chin. J. Pract. Stomatol., 2017, 10: 279
[13] (黄婉怡, 姜慕舟, 战德松. 口内扫描仪结合3D打印技术单冠固定修复临床研究 [J]. 中国实用口腔科杂志, 2017, 10: 279
[14] Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, 33C: 419
[15] Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology [J]. Int. J. Oral Maxill. Surg., 2012, 41: 858
[16] Zhao B, Xu D K, Sun Z Q, et al. In vitro biocompatibility and antibacterial property of a novel magnesium phosphate whisker [J]. Chin. J. Mater. Res., 2016, 30: 220
[16] (赵 冰, 徐大可, 孙子晴等. 新型磷镁晶须的体外生物相容性和抗菌性能 [J]. 材料研究学报, 2016, 30: 220
[17] Foreman A, Boase S, Psaltis A, et al. Role of bacterial and fungal biofilms in chronic rhinosinusitis [J]. Curr. Allergy Asthma Rep., 2012, 12: 127
[18] Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197
[19] Kang M K, Moon S K, Kwon J S, et al. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys [J]. Mater. Res. Bull., 2012, 47: 2952
[20] Mei S L, Wang H Y, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes [J]. Biomaterials, 2014, 35: 4255
[21] Zheng Y H, Li J B, Liu X Y, et al. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface [J]. Int J Nanomedicine, 2012, 7: 875
[22] Holmes C J, Faict D. Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies [J]. Kidney Int., 2003, 64(Suppl. 88): S50
[23] Scheiber I F, Mercer J F B, Dringen R. Metabolism and functions of copper in brain [J]. Progr. Neurobiol., 2014, 116: 33
[24] Szymański P, Fraczek T, Markowicz M, et al. Development of copper based drugs, radiopharmaceuticals and medical materials [J]. Biometals, 2012, 25: 1089
[25] Qi X H, Jiang H W. Matrix vesicles and their relationship with cytoskeleton-associated proteins [J]. Int. J. Stomatol., 2018, 45: 204
[25] (冼雪红, 蒋宏伟. 基质小泡及其与细胞骨架蛋白的关系 [J]. 国际口腔医学杂志, 2018, 45: 204)
[26] Yu T H, Zhang N, Zhan D S. Evaluation of biocompatibilities of three dental alloys by flow cytometry [J]. Chin. J. Mater. Res., 2013, 27: 652
[26] (毓天昊, 张 宁, 战德松. 使用流式细胞仪评价3种牙科合金材料的生物相容性 [J]. 材料研究学报, 2013, 27: 652)
[27] Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. Biomed. J. Mater. Res., 2018, 106A: 561
[28] Ren L, Wong H M, Yan C H, et al. Osteogenic ability of Cu-bearing stainless steel [J]. Biomed. J. Mater. Res, 2015, 103B: 1433
[29] Kemp M G. Crosstalk between apoptosis and autophagy: environmental Genotoxins, infection, and innate immunity [J]. J. Cell Death, 2017, 10, doi: 10.1177/1179670716685085.
[30] Jivan R, Damelin L H, Birkhead M, et al. Disulfiram/copper-disulfiram damages multiple protein degradation and turnover pathways and cytotoxicity is enhanced by metformin in oesophageal squamous cell carcinoma cell lines [J]. J Cell Biochem, 2015, 116: 2334
[31] Wu X, Xue X, Wang W J, et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer [J]. Eur. J. Pharmacol., 2018, 827: 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!