Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 65-71    DOI: 10.11901/1005.3093.2017.793
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries
Yadan XIAO,Xiaozhe JIN,Hao HUANG(),Aimin WU,Song GAO,Jia LIU
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Yadan XIAO,Xiaozhe JIN,Hao HUANG,Aimin WU,Song GAO,Jia LIU. Preparation and Electrochemical Behavior of MoP Nanoparticles as Anode Material for Lithium-ion Batteries. Chinese Journal of Materials Research, 2019, 33(1): 65-71.

Download:  HTML  PDF(5645KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Molybdenum phosphide (MoP) is successfully prepared by a facile 2-step process. First as precursor, nano metal Mo-powders were prepared via DC arc plasma method, which then react with red phosphorus through solid-phase reaction to yield MoP nanoparticles. The prepared MoP nanoparticles were further characterized by means of XRD and TEM. Results show that the MoP nanoparticles are spherical with particle diameter of 20-50 nm. As the anode material for lithium-ion batteries, MoP nanoparticles deliver the initial discharge capacity of 746 mAh/g at the current density of 100 mA/g and the capacity maintains at 241.9 mAh/g after 50 charge-discharge cycles. As the current density increased to 2000 mA/g the discharge capacity decreases to 99.90 mAh/g. The constant capacity of 247.60 mAh/g can be restored when the current density is back to 100 mA/g.

Key words:  inorganic non-metallic materials      molybdenum phosphide      nanoparticles      DC arc disch-arge      electrochemical perfor-mance      lithium-ion battery      anode material     
Received:  19 January 2018     
ZTFLH:  O646,TM912.9  
Fund: Fundamental Research Funds for the Central Universities(DUT17ZD101);National Natural Sci-ence Foundation of China(51171033);Science and Technology Supported Plan (Industry Field) of Changzhou(CE20160022)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.793     OR     https://www.cjmr.org/EN/Y2019/V33/I1/65

Fig.1  XRD patterns of (a) Mo and (b) MoP and (c) the crystalline structure of MoP
Fig.2  TEM images of the as-prepared (a, b) Mo and (c, d) MoP at different magnifications
Fig.3  Cyclic voltammogram of MoP nanoparticles
Fig.4  Electrochemical performance of MoP anode (a) cycling performance of MoP at 100 mA/g; (b) discharge/charge curves for MoP at 100 mA/g; (c) cycle performance of the MoP at different current densities
Fig.5  EIS curves (a) and equivalent circuit (b) of MoP anode materials
SampleCPE2/F

R2

/Ω·cm2

σw

/Ω·cm2·s-0.5

Do

/cm2·s-1

IF

/mA·cm-2

MoP initial-390.30473.354.17×10-171.07×10-2
3th cycle4.84×10-5119.60196.792.41×10-163.48×10-2
50th cycle1.36×10-521.26168.353.29×10-161.96×10-1
Table 1  Equivalent circuit parameters of MoP anode materials
1 AricoA S, BruceP, ScrosatiB, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366
2 ManthriamA, VadivelM A, SarkarA, et al. Nanostructured electrode materials for electrochemical energy storage and conversion [J]. Energy & Environmental Science, 2008, 1(6): 621
3 YangZ, ZhangJ, Kintner-meyerM C W, et al. Electrochemical energy storage for green grid [J]. Chemical Reviews, 2011, 111(5): 3577
4 ChangK, WangZ, HuangG, et al. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode [J]. Journal of Power Sources, 2012, 201: 259
5 ChenS Y, WangZ X, FangX P, et al. Characterization of TiS2 as an anode material for lithium ion batteries [J]. Acta Physico-Chimica Sinica, 2011, 27(1): 97
6 YangJ, ZhouX Y, LiJ, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries [J]. Materials Chemistry & Physics, 2012, 135(2-3): 445
7 JiaoL S, LiuJ Y, LiH Y, et al. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes [J]. Journal of Power Sources, 2016, 315: 9
8 GowdaP, KumarP, TripathiR, et al. Electric field induced ultra-high actuation in a bulk carbon nanotube structure [J]. Carbon, 2014, 67(2): 546
9 ZhangZ, LieberC M. Nanotube structure and electronic properties probed by scanning tunneling microscopy [J]. Applied Physics Letters, 1993, 62(22): 2792
10 WangJ, ZhouY, XiongB, et al. Fast lithium-ion insertion of TiO2, nanotube and graphene composites [J]. Electrochimica Acta, 2013, 88(2): 847
11 SunY, HuX, LuoW, et al. Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries [J]. Journal of Physical Chemistry C, 2012, 116(39): 20794
12 CabanaJ, MonconduitL, LarcherD, et al. Beyond interecalation-based Li-ion batteries:the state of the art and challenges of electrode materials reacting through conversion reactions [J]. Advanced Energy Materials, 2010, 22(35): E170-E192
13 ZhangH, BraunP V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes [J]. Nano Letters, 2012, 12(6): 2778
14 WangJ, DuN, ZhangH, et al. Cu-Si1-xGex, core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries [J]. Journal of Materials Chemistry, 2012, 208(4): 434
15 LiuC J, HuangH, CaoG Z, et al. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode [J]. Electrochimica Acta, 2014, 144: 376
16 KimH, LeeJ T, LeeD C, et al. Enhancing performance of Li-S cells using a Li-Al alloy anode coating [J]. Electrochemistry Communications, 2013, 36(6): 38
17 YinX, ChenL, LiC, et al. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties [J]. Electrochimica Acta, 2011, 56(5): 2358
18 SouzaD C, PralongV, JacobsonA J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry [J]. Science, 2002, 296(5575): 2012
19 SunF X, LiC. Advance in the research on hydrodesulfurization and hydrodenitrogenation on transition metal phosphides [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(6): 1
19 孙福侠, 李 灿. 过渡金属磷化物的加氢精制催化性能研究进展 [J]. 石油学报(石油加工), 2005, 21(6): 1)
20 LuY, TuJ, GuC, et al. In situ, growth and electrochemical characterization versuslithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy [J]. Journal of Materials Chemistry, 2011, 21(44): 17988
21 KimM G, LeeS, ChoJ. Highly reversible li-ion MoP2 nanoparticle cluster anode for lithium rechargeable batteries [J]. Journal of Electrochemical Society, 2009, 156(2): A89-A94
22 TianJ, LiuQ, AsiriA M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 [J]. Journal of the American Chemical Society, 2014, 136(21): 7587
23 ChengR H, ShuY Y, LiL, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Applied Catalysis A General, 2007, 316(2): 160
24 LiW J, ChouS L, WangJ Z, et al. Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability [J]. Advanced Materials, 2014, 26(24): 4037
25 LuY, TuJ P, XiongQ Q, et al. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries [J]. Advanced Functional Materials, 2012, 22(18): 3927
26 DoannguyenV V, ZhangS, TriggE B, et al. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. J. Acs Nano, 2015, 9(8): 8108
27 YangD, ZhuJ X, RuiX H, et al. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries [J]. Acs Applied Materials & Interfaces, 2013, 5(3): 1093
28 BaiY J, ZhangH J, LiX, et al. Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage [J]. Nanoscale, 2015, 7(4): 1446
29 WangX, SunP, QinJ, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. J. Nanoscale, 2016, 8: 10330
30 LiuC J, HuangH, CaoG Z, et al. Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode [J]. Electrochimica Acta, 2014, 144: 376
31 GoodenoughJ B, KimY. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials, 2015, 22(3): 587
32 HuangH, GaoS, WuA M, et al. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation [J]. Nano Energy, 2016, 31: 74
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. 材料研究学报, 2022, 36(8): 602-608.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!