Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 15-26    DOI: 10.11901/1005.3093.2017.774
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Cutting Performance of Diamond Coated Hard Alloy Cutting Tools for 7075 Aviation Al-alloy
Yibao WANG1,2,Nan HUANG1(),Lusheng LIU1,Ziyao YUAN1,Peng LI1,Wenxue ZHANG2(),Xin JIANG1()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
Cite this article: 

Yibao WANG,Nan HUANG,Lusheng LIU,Ziyao YUAN,Peng LI,Wenxue ZHANG,Xin JIANG. Preparation and Cutting Performance of Diamond Coated Hard Alloy Cutting Tools for 7075 Aviation Al-alloy. Chinese Journal of Materials Research, 2019, 33(1): 15-26.

Download:  HTML  PDF(30392KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diamond coatings were deposited on hard alloy cutting tool of WC-Co8% via hot filament chemical vapor deposition (HFCVD) technology. Two type of coatings, namely, monolayered coating consisted of microcrystalline with grain size of 1.2 μm and multi-layered coating consisted of nanocrystalline with grain size of 200 nm, were prepared by adjusting the methane concentration in the reaction chamber. Then the cutting performance of WC-Co8% cutting tools coated with the two coatings was comparatively assessed via machining 7075 aviation Al-alloy under dry cutting conditions without lubrication. The results show that after cutting for 2 h, coating partially spalled off and the tool edge became blunted for the tool with monolayer diamond coating, in the contrary, the tool edge remains intact and the coating does not fall off for the tool with multilayed diamond coating. Furthermore, Rockwell indentation test of flat samples of hard alloy with coatings revealed that the area of delamination induced by indentation for the multilayered coating is 1/5 to 1/10 of that for the monolayered one. Accordingly, the cracking resistance of the multilayered diamond coating should be better. It follows that the multilayered structure can be adopted to enhance the adhesion of diamond coatings to the substrate, thereby effectively increase the service performance of diamond coating tools.

Key words:  surface and interface in the materials      hot filament chemical vapor deposition      diamond coating tool      multilayer diamond      cutting performance     
Received:  29 December 2017     
ZTFLH:  O484  
Fund: National Natural Science Foundation of China(51202257);Shenyang Double-Huandred Project(Z17-7-027);Shenyang Double-Huandred Project(Z18-0-025)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.774     OR     https://www.cjmr.org/EN/Y2019/V33/I1/15

Table 1  Detials of diamond films deposited on WC-Co8% piece with different CH4 Concentration
Fig.1  Two different diamond films
Table 2  Detials of diamond films deposited with different CH4 on tools
Fig.2  SEM images of diamond films deposited at different mechane concentration (a) 1%; (b) 1.5%; (c) 2%; (d) 3%
Fig.3  Cross-sectional SEM images of diamond films deposited at different mechane concentration (a) 1%; (b) 1.5%; (c) 2%; (d) 3%
Fig.4  Growth rate of diamond films deposited at different mechane concentration
Fig.5  Fitting curve of Raman spectrum detected from the specimen (a) 1%; (b) 1.5%; (c) 2%; (d) 3%
Fig.6  IDiamond/IG of diamond films deposited with different mechane concentration
Fig.7  XRD partterns of diamond films deposited at different methane concentration (a) 1%; (b) 1.5%; (c) 2%; (d) 3%
Fig.8  FWHM of diamond films deposited at different methane concentration
Fig.9  Images of diamond tool (a) top; (b) edge; (c) object of tool; (d) groove
Fig.10  Edge and cross-sectional SEM images of monolayer and multilayer diamond tools (a) edge of monolayer diamond tool; (b) edge of multilayer diamond tool; (c) cross-section of monolayer diamond tool; (d) cross-section of multilayer diamond tool
Fig.11  Raman shift of monolayer and multilayer diamond tools
Fig.12  Image of the Rockwell C indentation with 60Kgf and 100Kgf on the different film (a) 60 Kgf on monolayer diamond film; (b) 60 Kgf on multilayer diamond film; (c) 100 Kgf on monolayer diamond film; (d) 100 Kgf on multilayer diamond film
Fig.13  Images of edge of tools after cut test 1 h,1.5 h,2 h No film tool (a) 1 h; (b) 1.5 h; (c) 2 h; Monolayer diamond film tool (d) 1 h; (e) 1.5 h; (f) 2 h; Multilayer diamond film tool (g) 1 h; (h) 1.5 h; (i) 2 h
Fig.14  SEM Images of edge of tools after cut test 1 h, 1.5 h, 2 h, No film tool (a) 1 h; (b) 1.5 h; (c) 2 h; Monolayer diamond film tool (d) 1 h; (e) 1.5 h; (f) 2 h; Multilayer diamond film tool (g) 1 h; (h) 1.5 h; (i) 2 h
Fig.15  SEM images and EDS of breakage of monolayer diamond film tool (a) edge; (b) breakage; (c) EDS of interface
Fig.16  Faliure analysis of different films (a) monolayer diamond film; (b) multilayer diamond film
1 AshfoldM N R, MayP W, C ARegoet al. Thin film diamond by chemical vapour deposition methods [J].Chem. Soc. Rev., 1994, 23: 21
2 LeeS T, LinZ, JiangX. CVD diamond films: nucleation and growth [J]. Mat. Sci. Engr., 1999, 4(25): 123
3 MatumotoS, SatoY, TsutusmiM, et al. Growth of diamond particles from methane-hydrogen gas [J].J. Mater. Sci., 1982, 17(11): 3106
4 ChenN C, ShenB, YangG D, et al. Tribological and cutting behavior of silicon nitride tools coated with monolayer and multilayer-microcrystalline HFCVD diamond films [J]. Appl. Surf. Sci., 2013, 265(1): 850
5 ShenB, SunF H, ZhangZ M, et al. Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions [J]. Trans. Nonferrous Met. Soc. China, 2013, 23(1): 161
6 BouzakisK D, MichailidisN, SkordarisG, et al. Cutting with coated tools: Coating technologies, characterization methods and performance optimization [J]. Cirp. Ann-Manuf. Techn., 2012, 61(2): 703
7 JohnstonJ M, BakerP, CatledgeS A. Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers[J]. Diam. Relat. Mater., 2016, (69): 114
8 UhlmannE, KoenigJ. CVD diamond coatings on geometrically complex cutting tools [J]. Ann-Manuf. Techn., 2009, 58(1): 65
9 HeiH J, MaJ, LiX J, et al. Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer [J]. Surf. Coat. Tech., 2015, 261: 272
10 ZhangJ G, WangX C, ShenB, et al. Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRPP [J]. Int. J. Refract. Meth., 2013, 41(11): 285
11 ZhangJ G, ShenB, SunF H, et al. Study on fabrication and cutting performance of CVD diamond coated drills in machining the carbon fiber reinforced plastics [J]. Solid State Phenom., 2011, (175): 239
12 SalgueiredoE, AmaralM, NetoM A, et al. HFCVD diamond deposition parameters optimized by a Taguchi Matrix [J]. Vacuum., 2011, 85(6): 701
13 WeiQ P, AshfoldM N R, MankelevichY A, et al. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament–substrate separation [J]. Diam. Relat. Mater., 2011, 20 (5-6): 641
14 ZhangJ G, ZhangT, WangX C, et al. Simulation and experimental studies on substrate temperature and gas density field in HFCVD diamond films growth on WC-Co drill tools [J]. Surf. Rev. Lett., 2013, 20 (2): 593
15 BouzakisK D, SkordarisG, BouzakisE, et al. Effect of the interface fatigue strength of NCD coated hard metal inserts on their cutting performance in milling [J]. Diam. Relat. Mater., 2015, 59: 80
16 HanyuH, MurakamiY, KamiyaS, et al. New diamond coating with finely crystallized smooth surface for the tools to achieve fine surface finish of non-ferrous metals [J]. Surf. Coat. Tech., 2003, 169 (22): 258
17 GruenD M, LiuS Z, KraussA R, et al. Buckyball microwave plasmas: fragmentation and diamond-film growth [J].J. Appl. Phys., 1994,75 (3): 1758
18 ZhouD, McCauleyT G, QinL C, et al. Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma [J].J. Appl. Phys., 1998, 83(1): 540
19 ZhangY F, ZhangF, GaoQ J, et al. The roles of argon addition in the hot filament chemical vapor deposition system [J]. Diam. Relat. Mater., 2001, 10(8): 1523
20 PiazzaF, GolansikA, SchulzeS, et al. Transpolyacetylence chains in hydrngenated amorphous carbon films free of nanocrystalline diamond [J]. Appl. Phys. Lett., 2003, 82 (3): 358
21 FerrariA C, RobertsonJ. Resonant Raman spectroscopy of disordered amorphous and diamondlike carbon [J]. Phys. Rev. B, 2001, 64: 075414
22 WilliamsO A. Nanocrystalline diamond [J]. Diam. Relat. Mater., 2011, 20(5): 621
23 RalchenkoV G, SmolinA A, PereverzevV G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diam. Relat. Mater., 1995, 4(5): 754
24 WangT, XiangL. ShiW, et al. Deposition of diamond/β-Si C/cobalt silicide composite interlayers to improve adhesion of diamond coating on WC-Co substrates by DC-Plasma Assisted HFCVD [J]. Surf. Coat. Tech., 2011, 205(8-9): 3027
25 AskariS J, ChenG C, AkhtarF, et al. Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma [J]. Diam. Relat. Mater., 2008, 17(3): 294
26 VidakisN, AntoniadisA, BilalisN. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. J. Mater. Process Tech., 2003, 143: 481
27 SkordarisG, BouzakisK D, CharalampousP, et al. Effect of structure and residual stresses of diamond coated cemented carbide tools on the film adhesion and developed wear mechanisms in milling [J]. Cirp. Ann-Manuf. Techn., 2016, 65(1): 101
28 WoehrlN, HirteT, PosthO, et al. Investigation of the coefficent of thermal expansion in nanocrystalline [J]. Diam. Relat. Mater., 2009, 18(2): 224
29 ZhaoD C, RenN. The methods of reducing intrinsic stress of superhard diamond-like films[J].Vccuum & Cryogenics, 2006, 12(1): 224
29 赵栋才, 任妮. 降低超硬类金刚石薄膜应力的方法 [J].真空与低温, 2006, 12(1): 224
30 SuY L, KaoW H. Tribological Behavior and Wear Mechanisms of TiN/TiCN/TiN multilayer Coatings [J]. Jmepeg,1998, 7(5): 601
31 SalgueiredoE, AlmeidaF A, AmaralM, et al. A multilayer approach for enhancing the erosive wear resistance of CVD diamond coatings [J]. Wear, 2013, 297(1): 1064
32 ShabaniM, SacramentoJ, OliveiraF J, et al. Multilayer CVD diamond coating in the machining of an Al6061-15Vol% Al2O3 Composite [J]. Coatings, 2017, 7(10):165
33 DengF M, ChenL, LiuC, et al. Study on the cutting properties of micro-nano- and micro/nano diamond coatings [J]. Diamond & Abrasives Engineering, 2015, 35(4): 1
33 邓福铭, 陈立, 刘畅等. 微米、纳米及微/纳米复合金刚石涂层的切削性能研究 [J]. 金刚石与磨料模具工程, 2015, 35(4): 1
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!