Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (11): 867-873    DOI: 10.11901/1005.3093.2017.710
Orginal Article Current Issue | Archive | Adv Search |
Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride
Zhaohui GAO(), Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU
School of Science, Dalian Ocean University, Dalian 116023, China
Cite this article: 

Zhaohui GAO, Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU. Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride. Chinese Journal of Materials Research, 2018, 32(11): 867-873.

Download:  HTML  PDF(1871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spherical porous VN materials were synthesized by a facile NH3 reduction method with spherical V2O5 as the precursor,while the spherical V2O5 was prepared via soft template method and spray drying technology. The structure, morphology and electrochemical performance of the prepared VN were characterized by means of XRD,SEM,TEM,and N2 adsorption-desorption analysis, as well as cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the synthesized spherical porous VN powder presents cubic crystallographic structure with abundant mesopores,and its specific surface area is 120 m2·g-1. In addition, the spherical porous VN powder presents characteristics both in electrical double-layer capacitance and redox pseudo-capacitance . Its specific capacitance is 513 F·g-1 by current density of 100 mA·g-1,and which remained 76.8% even after 5000 cycles. For power density is 590 W·kg-1,its energy density is 65.0 W·h·kg-1. When the power density was 3260 W·kg-1,the energy density was as high as 24.17 W·h·kg-1.

Key words:  inorganic non-metallic materials      supercapacitors      electrochemistry      spherical porous VN     
Received:  01 December 2017     
ZTFLH:  O646  
Fund: Supported by Special Funds from the Central Finance to Support the Development of Local Universities (No. 500217201010) and Natural Science Foundation of Liaoning Province (No. 20170540109)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.710     OR     https://www.cjmr.org/EN/Y2018/V32/I11/867

Fig.1  XRD patterns of V2O5 precursor (a) and spherical porous VN (b)
Fig.2  SEM images of V2O5 precursor (a) and spherical porous VN (b), TEM images of spherical porous VN (c, d), and EDS pattern of spherical porous VN (e)
Fig.3  N2 adsorption-desorption isotherms and the pore size distribution curve of precursor V2O5 (a, b) and spherical porous VN (c, d)
Fig.4  Cyclic Voltammograms at different scan rates (a), charge-discharge curves at different current densities of spherical porous VN (b), Specific capacitances at various scan rates (c) and cycle behavior of spherical porous VN (d), Nyquist plots of spherical porous VN electrode (e) and Energy density vs. Power density plot of spherical porous VN electrode (f)
Fig.5  XPS spectrum of spherical porous VN
[1] Conway B E.Transition from supercapacitor to battery behavior in electrochemical energy-storage[J]. J. Electrochem. Soc., 1991, 138(6): 1539
[2] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142(1): L6
[3] Miller J R, Burke A F.Electrochemical capacitors: Challenges and opportunities for real-world applications[J]. Electrochem. Soc. Interface, 2008, 17(1): 53
[4] Miller J R, Simon P.Materials science―Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651
[5] Lam L T, Louey R.Development of ultra-battery for hybrid-electric vehicle applications[J]. J. Power Sources, 2006, 158(2): 1140
[6] Zhu D Z, Wang Y W, Gan L H, et al.Nitrogen-containing carbon microspheres for supercapacitor electrodes[J]. Electrochim. Acta, 2015, 158: 166
[7] Cheng J, Cao G P, Yang Y S.Characterization of sol-gel-derived NiOx xerogels as supercapacitors[J]. J. Power Sources, 2006, 159(1): 734
[8] Lee H Y, Goodenough J B.Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J]. J. Solid State Chem., 1999, 148(1): 81
[9] Ragupathy P, Park D H, Campet G, et al.Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J]. J. Phys. Chem. C, 2009, 113(113): 6303
[10] Feng Z P, Li G R, Zhong J H, et al.MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties[J]. Electrochem. Commun., 2009, 11(3): 706
[11] Zhang H, Cao G P, Wang Z Y, et al.Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage[J]. Nano Lett., 2008, 8(9): 2664
[12] Choi D, Kumta P N.Chemically synthesized nanostructured VN for pseudocapacitor application[J]. Solid-State Lett., 2005, 8(8): A418
[13] Choi D, Blomgren G E, Kumta P N.Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Adv. Mater., 2006, 18(9): 1178
[14] Wen Z H, Cui S M, Pu H H, et al.Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Adv. Mater., 2011, 23(45): 5445
[15] Dong S M, Chen X, Gu L, et al.Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Appl. Mater. Interfaces, 2011, 3(1): 93
[16] Zhou X P, Chen H Y, Shu D, et al.Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material[J]. J. Phys. Chem. Solids, 2009, 70(2): 495
[17] Glushenkov A M, Hulivova-Jurcakova D, Llewellyn D, et al.Structure and capacitive properties of porous nanocrystalline VN produced by NH3 reduction of V2O5[J]. Chem. Mater., 2010, 22(3): 914
[18] Cheng F K, He C, Shu D, et al.Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior[J]. Mater. Chem. Phys., 2011, 131(1-2): 268
[19] Shu D, Lv C J, Cheng F K, et al.Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors[J]. Int. J. Electrochem. Sci., 2013, 8(1): 1209
[20] Zhao J X, Liu B, Xu S, et al.Fabrication and electrochemical properties of porous VN hollow nanofibers[J]. J. Alloys Compd., 2015, 651: 785
[21] Gao B, Li X X, Guo X L, et al.Nitrogen-Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Self-Supported Electrodes for Flexible All-Solid-State Supercapacitors[J]. Adv. Mater. Interfaces, 2015, 2(13): DOI: 10.1002/admi.201500211.
[22] Bi W T, Hu Z P, Li X G, et al.Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitor[J]. Nano Res., 2015, 8(1): 193
[23] Dong S M, Chen X, Gu L, et al.TiN/VN composites with core/shell structure for supercapacitors[J]. Mater. Res. Bull., 2011, 46(6): 835
[24] Zhou X H, Shang C Q, Gu L, et al.Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Appl. Mater. Inter., 2011, 3(8): 3058
[25] Achour A, Lucio-Porto R, Chaker M, et al.Titanium Vanadium Nitride Electrode For Micro-Supercapacitors[J]. Electrochem. Commun., 2017, 77: 40
[26] Liu Y, Liu L Y, Kong L B, et al.Supercapacitor electrode based onnano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems[J]. Electrochim. Acta, 2016, 211: 469
[27] Yang Y L, Shen K W, Liu Y, et al.Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor[J]. Nano-Micro Lett., 2017, 9(1): 6
[28] Pang H C, Ee S J, Dong Y Q, et al.TiN@VN nanowire arrays on 3D carbon for high performance supercapacitors[J]. ChemElectroChem., 2014, 1(6): 1027
[29] Zhang L, Holt C M B, Luber E J, et al. High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes[J]. J. Phys. Chem. C, 2011, 115(49): 24381
[30] Balamurugan J, Karthikeyan G, Thanh T D, et al.Facile synthesis of vanadium nitride/nitrogen-doped grapheme composite as stable high performance anode materials for supercapacitors[J]. J. Power Sources, 2016, 308(3): 149
[31] Xiao X, Peng X, Jin H Y, et al.Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All-Solid-State Supercapacitors[J]. Adv. Mater., 2013, 25(36): 5091
[32] Lu X H, Yu M H, Zhai T, et al.High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Lett., 2013, 13(6): 2628
[33] Eustache E, Frappier R, Porto R L, et al.Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes[J]. Electrochem. Commun., 2013, 28(28): 104
[34] Yang Y L, Zhao L, Shen K W, et al.Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage[J]. J. Power Sources, 2016, 333: 61
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!