Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 142-148    DOI: 10.11901/1005.3093.2017.625
ARTICLES Current Issue | Archive | Adv Search |
Effect of Cr/Ni Equivalent Ratio on Microstructure and Properties of Austenitic Stainless Steel CAP1400 for Reactor Coolant Pump Casing
Xiuhong KANG(), Xiaoqiang HU, Leigang ZHENG, Lijun XIA
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Xiuhong KANG, Xiaoqiang HU, Leigang ZHENG, Lijun XIA. Effect of Cr/Ni Equivalent Ratio on Microstructure and Properties of Austenitic Stainless Steel CAP1400 for Reactor Coolant Pump Casing. Chinese Journal of Materials Research, 2018, 32(2): 142-148.

Download:  HTML  PDF(3300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austenitic stainless steels with different Cr / Ni equivalent ratio for CAP1400 reactor coolant pump casings were designed based on thermodynamics consideration. The effect of Cr/Ni equivalent ratio and solution treatment temperature on the ferrite volume fraction and tensile properties of the steel at 350℃ were investigated by microstructure observation and tensile tests. Results show that with the increase of Cr/Ni equivalent ratio the amount of ferrite-phase in austenitic stainless steel increases and the ferrite-phase is more bulky. The austenitic stainless steel with high Cr/Ni equivalent ratio has a higher tensile strength at 350℃, which can meet the requirements of mechanical properties for CAP1400 pump casing. After solution treatment at different temperatures in the range from 1100~1200℃, the content of ferrite-phase in the studied steel was slightly increased with the raising of solution treatment temperature, but it had little effect on the tensile properties at 350℃.

Key words:  metallic materials      austenitic stainless steel      Cr/Ni equivalent ratio      solution treatment      ferrite contents      nuclear reactor coolant pump casing     
Received:  19 October 2017     
ZTFLH:  TG171  
Fund: Supported by Liaoning Science and Technology Innovation Major Project (No. 201410003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.625     OR     https://www.cjmr.org/EN/Y2018/V32/I2/142

Elements C Mn Si S P Cr Ni Mo Fe
Specification ≤0.08 ≤1.50 ≤2.00 ≤0.005 ≤0.03 18.0~21.0 8.0~11.0 ≤0.50 Bal.
Table 1  Composition range of CAP1400 austenitic stainless steel (%, mass fraction)
Strength parameter Rm/MPa Rp0.2/MPa
Requirement ≥404 ≥144
Table 2  Tensile properties of CAP1400 austenitic stainless steel at 350℃
Fig.1  Heat treatment process for as cast samples of CAP1400-1 and CAP1400-2 steels
Elements C Mn Si Ni Cr Mo S P N O Fe
CAP1400-1 0.063 1.16 1.49 11.25 19.72 0.52 0.0004 0.004 0.026 0.0009 Bal.
CAP1400-2 0.056 1.18 1.49 8.60 19.95 0.39 0.0007 0.005 0.028 0.0008 Bal.
Table 3  Chemical compositions of CAP1400 austenite stainless steel (%, mass fraction)
Fig.2  Solidification characteristics of CAP1400 austenite stainless steel at thermo dynamic equilibrium state (1- liquid, 2-liquid+BCC, 3-liquid+BCC+FCC)
Elements C Mn Si Ni Cr Mo S P N O Fe Creq/Nieq
CAP1400-1 0.060 1.20 1.50 11.00 20.00 0.50 ≤0.0015 ≤0.01 0.03 ≤0.0015 Bal. 0.99
CAP1400-2 0.060 1.20 1.50 8.00 20.00 0.50 ≤0.0015 ≤0.01 0.03 ≤0.0015 Bal. 1.22
Table 4  Designed chemical compositions of CAP1400 austenite stainless steel (%, mass fraction)
Fig.3  Mass fraction of phases as a function of temperature in CAP1400-1 (a) and CAP1400-2 (b)steels at thermodynamic equilibrium state (1-liquid, 2-δ phase, 3-γ phase,4-σ phase, 5-M23C6)
Fig.4  Optical micrographs of CAP1400-1 (a) and CAP1400-2 (b) austenite stainless steels
Steel Creq/Nieq Calculated ferrite fraction/%,
volume fraction
Measured ferrite fraction/%,
volume fraction
CAP1400-1 0.99 4.8 6.6±1.1
CAP1400-2 1.22 14.5 12.1±1.3
Table 5  Volume fraction of δ ferrite phases in CAP1400-1 and CAP1400-2 austenite stainless steels
Fig.5  Microstructure of CAP1400-1 alloy after solid solution treatment (a) 1110℃, (b) 1130℃, (c) 1160℃
Fig.6  The microstructure of CAP1400-2 alloy after solid solution treatment (a) 1110℃, (b) 1130℃, (c) 1160℃
Fig.7  Effect of heat treatment on ferrite content in CAP1400-1 and CAP1400-2 alloys
Fig.8  Yield strength (a) and tensile strength (b) of CAP1400-1 and CAP1400-2 at 350℃
Fig.9  Effect of solid solution temperature on the elongation of CAP1400-1 and CAP1400-2 steels at 350℃
Fig.10  Microstructure of tensile fracture at 350℃after solution treated at 1100℃ (a), 1130℃ (b), and 1160℃(c) for CAP1400-1 steeland solution treated at 1100℃ (d), 1130℃ (e), 1160℃ (f) for CAP1400-2 steel
[1] Flowers J W, Beck F H, Fontana M G.Corrosion and age hardening studies of some cast stainless alloys containing ferrite[J]. Corrosion, 1963, 19(5): 186
[2] Moller G E.The successful use of austenitic stainless steels in sea water[J]. Society of Petroleum Engineers, 1976:101
[3] McCaul C. A cavitation-resistant casting alloy for pumps-status after ten years' commercial use[C]. Second International Symposium on Advanced Materials for Fluid Machinery, 2004: 15
[4] Mathew M D, Lietzan L M, Murty K L, et al.Low temperature aging embrittlement of CF-8 stainless steel[J]. Mater. Sci. Eng., A, 1999, 269(1): 186
[5] Beck F H, Juppenlatz J, Wieser P F.Effects of ferrite and sensitization on intergranular and stress-corrosion behavior of cast stainless steels[J]. Astm Special Technical Publication, 1976
[6] Chen J Z, Yan H B, Zheng Y M, et al.Influences of ferrite content on the performance of casting austenitic stainless steel CF-3M[J]. Development and Application of Materials, 2002, 17(6): 9(陈继志, 颜红兵, 郑咏梅等. 铁素体对铸造奥氏体不锈钢CF-3M性能的影响[J]. 材料开发与应用, 2002, 17(6): 9)
[7] Zhang H, Li S L, Liu G, et al.Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel[J]. Acta Metallurgica Sinica, 2017, 53(5): 531(张海, 李时磊, 刘刚等. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531)
[8] Li S L, Wang Y L, Li S X, et al.Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels[J]. Act. Metall. Sin., 2010, 46(10): 1186(李时磊, 王艳丽, 李树肖等. 长期热老化对铸造奥氏体不锈钢组织和性能的影响[J]. 金属学报, 2010, 46(10): 1186)
[9] Man D H, Wang L F.Weld hot cracking causes and preventive measures of austenitic stainless steel[J]. Hot Working Technology, 2012, 41(11): 181(满达虎, 王丽芳. 奥氏体不锈钢焊接热裂纹的成因及防止对策[J]. 热加工工艺, 2012, 41(11): 181)
[10] Wang Y T.Study on regularity of austenitic stainless steel weld toughness and microstructure [D]. Nanjing University of Science and Technology, 2012(王亚婷. 奥氏体不锈钢焊缝韧性与组织规律性研究[D]. 南京理工大学, 2012)
[11] Ma J C, Yang Y S, Tong W H, et al.Microstructural evolution in AISI 304 stainless steel during directional solidification and subsequent solid-state transformation[J]. Mater. Sci. Eng., A, 2007, 444(1): 64
[12] John C. Lippold, Damian J. Kotecki. Stainless Steel Welding Metallurgy and Weldability [M]. China Machine Press, 2008(John C. Lippold, Damian J.Kotecki [M]. 不锈钢焊接冶金学及焊接性[M]. 机械工业出版社, 2008)
[13] Zhang Y S, Zhang X Z, Tian X J, et al.Effect of heat treatment on microstructure and mechanical properties of 316LN austenitic stainless steel as-cast[J]. Hot Working Technology, 2011, 40(18): 180(张义帅, 张秀芝, 田香菊等. 加热规范对316LN铸态奥氏体不锈钢组织和性能的影响[J]. 热加工工艺, 2011, 40(18): 180)
[14] Lei R G.Effect of the heat treatment on the microstructure and mechanical properties of 316L[J]. Bao Steel Technology, 2009, 2009(5): 42(雷锐戈. 加热制度对316L铸坯微观组织和力学性能的影响[J]. 宝钢技术, 2009, 2009(5): 42)
[15] Li Y, Kou H C, Liu M T, et al.Influence of heat treatment on microstructure and mechanical property of austenitic stainless steel[J]. Science & Technology Review, 2011, 29(11-05): 37(李勇, 寇宏超, 柳木桐等. 热处理对奥氏体不锈钢00Cr18Ni10N组织和性能的影响[J]. 科技导报, 2011, 29(11-05): 37)
[16] Deng S H, Zhang J J, Ye X H, et al. Influence of heat treatment on properties of 304 austenitic stainless steel by adding copper for nickel saving[J]. Hot Working Technology, 2010(14): 145(邓姝皓, 张金菊, 叶晓慧等. 热处理对含铜节镍奥氏体不锈钢性能的影响[J]. 热加工工艺, 2010(14): 145)
[17] Lu S Y.Stainless Steel [M]. Atomic Energy Press, 1995(陆世英. 不锈钢[M]. 原子能出版社, 1995)
[18] Wu J, et al.Duplex Stainless Steel [M]. Metallurgical Industry Press, 1999(吴玖等. 双相不锈钢[M]. 冶金工业出版社, 1999)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!