Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 149-154    DOI: 10.11901/1005.3093.2017.262
ARTICLES Current Issue | Archive | Adv Search |
Effect of Additives on Synthesis and Optical Property of Metastable γ-Bi2O3
Yajun WANG(), Haiyang YU, Zexue LI, Liang GUO
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

Yajun WANG, Haiyang YU, Zexue LI, Liang GUO. Effect of Additives on Synthesis and Optical Property of Metastable γ-Bi2O3. Chinese Journal of Materials Research, 2018, 32(2): 149-154.

Download:  HTML  PDF(4028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metastable γ-Bi2O3 was prepared via a solution precipitation method in ethylene glycol-water solvent system at 80℃ for 40 min by ambient atmospheric pressure with Bi(NO3)35H2O as bismuth source and NaOH as precipitant. The effect of additives (glycerol, TrionX-100, CTAB, SDBS, ethanol, and oleic acid) on the microstructure and optical properties of metastable γ-Bi2O3 were investigated by means of X-ray diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible spectrum (UV-VIS) and Fluorescence spectrum (PL). The as-prepared product composed mainly of γ-Bi2O3 and little α-Bi2O3 with dimensions of submicron to micron. Products with diversified morphologies such as cube, tetrahedron, and three-dimensional self-assembled hierarchical flower-like respectively were obtained by adding different additives. UV-visible diffuse reflectance spectrum shows that the product presents photo-absorption property from UV light- to visible light-range, which belongs to the absorption caused by electron transition from valence band to conduction band, that is Bi2O3 direct band gap absorption. The band gaps of Bi2O3 are estimated to be 2.30~2.81 eV for different additives. The fluorescence spectrum of the product shows broad emission (400~600 nm) with 5 emission bands (their center located at 449 nm, 466 nm, 480 nm, 491 nm, and 561 nm). The results also show that the additive not only has an important effect on the purity and microstructure of the product, but also has a significant effect on the crystal structure, which will change the physical and chemical properties (such as light properties) of the materials. By adding additives, the final bandgap width of the products can be adjusted.

Key words:  inorganic non-metallic materials      optical property      solution precipitation method      γ-Bi2O3      microstructure     
Received:  17 April 2017     
ZTFLH:  O614.53+2  
  TQ567.8  
Fund: Supported by the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No. YBKT16-06)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.262     OR     https://www.cjmr.org/EN/Y2018/V32/I2/149

Fig.1  XRD patterns of Bi2O3 samples with different additives
Sample Additive Amount Microstructure Crystalline phase
A1 Glycerol 1.0 mL Cube γ, little α
A2 TrionX-100 6.0 mL Tetrahedron γ
A3 CTAB/SDBS 0.1 g/0.1 g Tetrahedron or self-assembled
micro flower by tetrahedron
γ
A4 Ethanol 10 mL Self-assembled micro flower by cube γ
A5 Oleic acid 1 mL Nano cube γ
A6 Ethanol/Oleic acid 10 mL/1 mL Nano cube γ, little α
Table 1  Type and amount of additive and morphology and crystal form of the prepared bismuth oxide samples
Fig.2  SEM images of Bi2O3 samples with different additives (a) A1: $V_{C_{2}H_{6}O_{2}}$:$V_{H_{2}O}$=1:3, c(Bi3+)=0.05 mol/L, V(C3H8O3)=1.0 mL, (b) A2: =1:4, c(Bi3+)=0.10 mol/L, V(TrionX-100)=6.0 mL, (c) A3: =1:5, c(Bi3+)=0.10 mol/L, m(CTAB)=0.1 g, m(SDBS)=0.1 g, (d) A4: $V_{(C_{2}H_{6}O+C_{2}H_{6}O_{2})}$:$V_{H_{2}O}$=1:3, c(Bi3+)=0.10 mol/L, (e) A5: $V_{C_{2}H_{6}O_{2}}$:$V_{H_{2}O}$=1:5, c(Bi3+)=0.050 mol/L, V(OA)=1.0 mL, (f) A6: $V_{(C_{2}H_{6}O+C_{2}H_{6}O_{2})}$:$V_{H_{2}O}$=1:5, c(Bi3+)=0.050 mol/L, V(OA)=1.0 mL
Fig.3  UV-visible absorption spectrum of metastable γ-Bi2O3 architectures
Fig.4  (αhν)2-() curve of metastable γ-Bi2O3 architectures
Fig.5  Fluorescence spectrum of metastable γ-Bi2O3 architectures
[1] Mehring M.From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds[J]. Coord. Chem. Rev., 2007, 251(7-8): 974
[2] Hao W C, Gao Y, Jing X.Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphology[J]. J. Mater. Sci. Technol., 2014, 30(2): 192
[3] Iyyapushpam S, Nishanthi S T, Pathinettam P D.Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics[J]. J. Alloys Compd., 2014, 601: 85
[4] Sun Y Y, Wang W Z, Zhang L, et al. Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity[J]. Chem. Eng. J., 2012, 211-212: 161
[5] Li L, Yang Y W, Li G H, et al.Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes[J]. Small, 2006, 2(4): 548
[6] Jing H H, Chen X Q, Jiang X Y.Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems[J]. Micro Nano Lett., 2012, 7(4): 357
[7] Tseng T K, Choi J H, Jung D W, et al.Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide[J]. ACS Appl. Mater. Interfaces, 2010, 2(4): 943
[8] Wang Y, Li Y L.Metastable γ-Bi2O3 tetrahedra: Phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch[J]. J. Colloid Interface Sci., 2015, 454: 238
[9] Zhang J, Liu G, Wu W C. A low-temperature preparing method of γ-Bi2O3 photocatalyst[P]. China, CN-104741108 A, 2015(张静, 刘果, 吴维成. 一种γ晶相氧化铋(γ-Bi2O3)光催化剂的低温制备方法[P]. 中国, CN-104741108 A, 2015)
[10] Wang Y J, Li Z X, Yu H Y, et al.Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties[J]. Mater. Sci. Semicond. Process., 2017, 64: 55
[11] Blasse G, Hao Z.The luminescence of yitria stabilized zirconia doped with Bi2O3[J]. Mater. Res. Bull., 1984, 19(84): 1057
[12] Vila M, Díaz-Guerra C, Piqueras J.Luminescence and Raman study of α-Bi2O3 ceramics[J]. Mater. Chem. Phys., 2012, 133(1): 559
[13] Zorenko Y, Gorbenko V, Voznyak T, et al.Luminescence spectroscopy of Bi3+ single and dimer centers in Y3Al5O12:Bi single crystalline films[J]. J. Lumin., 2010, 130(10): 1963
[14] Srivastava A M.Luminescence of divalent bismuth in M 2+ BPO5 (M 2+=Ba2+, Sr2+ and Ca2+)[J]. J. Lumin., 1998, 78(4): 239
[15] Gaft M, Reisfeld R, Panczer G, et al.The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4[J]. Opt. Mater., 2001, 16(1): 279
[16] Kumari L, Lin J H, Ma Y R.One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties[J]. J. Phys.: Condens. Matter, 2007, 19(40): 406204
[17] Wang Y J, Li Z X, Yu H Y, et al.Facile and one-pot solution synthesis of several kinds of 3D hierarchical flower-like α-Bi2O3 microspheres[J]. Funct. Mater. Lett., 2016, 9: 1650059
[18] Wang Y, Zhao J Z, Zhou B, et al.Three-dimensional hierarchical flowerlike microstructures of α-Bi2O3 constructed of decahedrons and rods[J]. J. Alloy Compd., 2014, 592: 296
[19] Wan Y, Xia L H, Zhao X S, et al.Effect of planar defects on optical properties in three-dimensional colloid crystals[J]. Acta Optic. Sin., 2009, 29(7): 1991(万勇, 夏临华, 赵修松, 等. 面缺陷对三维胶体晶体光学性质的影响[J]. 光学学报, 2009, 29(7): 1991)
[20] Zhu C Q, Lei Z T, Yang C H.Research progress of point defects effects on optical properties of ZnGeP2 crystals[J]. J. Synth. Cryst., 2012, 41(S1): 160(朱崇强, 雷作涛, 杨春晖. ZnGeP2晶体点缺陷影响光学性能的研究进展[J]. 人工晶体学报, 2012, 41(S1): 160)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!