Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 432-431    DOI: 10.11901/1005.3093.2017.426
ARTICLES Current Issue | Archive | Adv Search |
Effect of Molybdenum on Microstructure and Properties of AISI D2 Tool Steel
Xumin LI1, Feng FANG1, Yiyou TU1, Xuefeng ZHOU1(), Jianzhong WU2, Huixia XU2
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Engineering Research Center of Tool Steel, Danyang 215400, China
Cite this article: 

Xumin LI, Feng FANG, Yiyou TU, Xuefeng ZHOU, Jianzhong WU, Huixia XU. Effect of Molybdenum on Microstructure and Properties of AISI D2 Tool Steel. Chinese Journal of Materials Research, 2018, 32(6): 432-431.

Download:  HTML  PDF(9901KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of Mo-content on the microstructure and properties of AISI D2 tool steel has been studied by means of OM, SEM, TEM, XRD and EDS. Results show that with the increasing Mo-content, the grain size of the steel decreased, while the amount of eutectic carbides increased, and the morphology of which changed from rod-like to fish bone-like and block-like. The thermal stability of the fish bone-like and block-like carbides is higher than that of the rod-like ones, thereby, they are difficult to dissolve and spheroidize during heating process. This fact may result in the decrease in solubility of alloying elements after quenching, and the decrease in hardness after tempering. The optimum Mo content is between 0.9% and 1.1%, correspondingly, the hardness of the tempered D2 steel is 61 HRC, and the impact toughness reaches about 20 J/cm2.

Key words:  metallic materials      D2 tool steel      molybdenum      carbide      hardness      impact toughness     
Received:  14 July 2017     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (No. 51301038), Primary Research and Development Plan of Jiangsu Province (No. BE2016154), Special Funds of Scientific and Technological Development of Danyang City (No. SGP201502)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.426     OR     https://www.cjmr.org/EN/Y2018/V32/I6/432

Fig.1  Microstrucure of D2 ingot: (a) 0.7%Mo; (b) 0.9%Mo; (c) 1.1%Mo; (d) 1.3%Mo
Fig.2  Three-dimensional morphologies of eutectic carbide in D2 ingot: (a) 0.7%Mo; (b) 0.9%Mo; (c) 1.1%Mo; (d) 1.3%Mo
The morphology of carbides Mo Cr Fe
Rod-like 2.3 47.3 49.1
Fishbone-like 4.0 46.6 48.1
Block-like 7.0 45.3 45.9
Table1  Chemical composition of carbides with different morphologies (%, mass fraction)
Fig.3  XRD profiles of carbides in D2 ingots (a) 0.7% Mo; (b) 1.3%Mo
Fig.4  Bright field image and diffraction pattern of the M7C3 carbides: (a) 0.7%Mo; (b) 1.3%Mo
Fig.5  Three-dimensional morphologies of eutectic carbides after heating: (a) 0.7%Mo; (b) 0.9%Mo; (c) 1.1%Mo; (d) 1.3%Mo
Fig.6  Microstructure of D2 steel after forging (K=6) (a) 0.7%Mo; (b) 0.9%Mo; (c) 1.1%Mo; (d) 1.3%Mo
Fig.7  Microstructure of D2 steel after quenching at 1100℃ (a) 0.7%Mo, (b) 0.9%Mo, (c) 1.1%Mo, (d) 1.3%Mo
Fig.8  Alloy content of the martrix after quenching at different temperature
Fig.9  Hardness and toughness of the D2 steel with different contents of Mo after quenching and tempering
[1] Zhang J F.Mold Material and Heat Treatment [M]. Beijing: China Machine Press, 2010张金凤. 模具材料与热处理 [M]. 北京: 机械工业出版社, 2010
[2] Chen Z Z, Ma D S.Advance in die steel products at home and abroad[J]. Spec. Steel, 2006, 27(5): 37陈再枝, 马党参. 国内外模具钢产品的进展[J]. 特殊钢, 2006, 27(5): 37
[3] Singh K, Khatirkar R K, Sapate S G. Microstructure evolution and abrasive wear behavior of D2 steel [J]. Wear, 2015, 328-329: 206
[4] Hamidzadeh M A, Meratian M, Saatchi A.Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel[J]. Mater. Sci. Eng., 2013, 571A: 193
[5] Park J S, Lee M G, Cho Y J, et al.Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process[J]. Met. Mater. Int., 2016, 22: 143
[6] Bombac D, Fazarinc M, Podder A S, et al.Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel[J]. J. Mater. Eng. Perform., 2013, 22: 742
[7] Kheirandish S.Effect of Ti and Nb on the formation of carbides and the mechanical properties in as-cast AISI-M7 high-speed steel[J]. ISIJ Int., 2001, 41: 1502
[8] Sawamoto A, Ogi K, Matsuda K.Solidification structures of Fe-C-Cr-(V-N b-W) alloys[J]. Trans. Am. Found. Soc., 1986, 94: 403
[9] Zhang J H, Li D J, Jia J, et al.Study on the structure and properties of a modified high-chromium cast iron[J]. Foundry, 1993, (8): 7张景辉, 李大军, 贾均等. 变质高铬铸铁组织与性能的研究[J]. 铸造, 1993, (8): 7
[10] Sun X M, Yang H.Influence of K/Na modificator & heat treatment on structure and performance of high chromium cast iron[J]. Hot Working Technology, 2007, 36(9): 30孙晓敏, 杨华. K/Na变质剂及热处理对高铬铸铁组织性能的影响[J]. 热加工工艺, 2007, 36(9): 30
[11] Pan Y C, Yang H, Liu X F, et al.Effect of K/Na on microstructure of high-speed steel used for rolls[J]. Mater. Lett., 2004, 58: 1912
[12] Tabrett C P, Sare I R, Ghomashchi M R.Microstructure-property relationships in high chromium white iron alloys[J]. Int. Mater. Rev., 1996, 41: 59
[13] The State Bureau of Quality and Technical Supervision . GB/T 1299-2000 Alloy tool steels [S]. Beijing: Standards Press of China, 2004国家质量技术监督局. GB/T 1299-2000 合金工具钢 [S]. 北京: 中国标准出版社, 2004
[14] Gao Y, Yang J Y, Wu C, et al.Effect of alloying elements in low alloy steel on corrosion and stability of matrix[J]. J. Shenyang Norm. Univ.(Nat. Sci. Ed.), 2011, 29: 510高岩, 杨靖瑜, 吴闯等. 低合金钢中合金元素对基体的作用及性能影响[J]. 沈阳师范大学学报(自然科学版), 2011, 29: 510
[15] Li Y J, Jiang Q C, Zhao Y G, et al.A dynamic study on the spheroidizing of eutectic carbide in the modified M2 steel[J]. Acta Metall. Sin., 1999, 35: 207李彦军, 姜启川, 赵宇光等. 变质M2高速钢中共晶碳化物加热团球化的动力学研究[J]. 金属学报, 1999, 35: 207
[16] Chen L L, Zhou X F, Fang F, et al.Effect of vanadium content on microstructure and properties of AISI D2 die steel[J]. Trans. Mater. Heat Treat., 2017, 38(1): 71陈雷雷, 周雪峰, 方峰等. V含量对D2钢组织与性能的影响[J]. 材料热处理学报, 2017, 38(1): 71
[17] Mao W W, Ning A G, Guo H J.Nanoscale precipitates and comprehensive strengthening mechanism in AISI H13 steel[J]. Int. J. Miner., Metall., Mater., 2016, 23: 1056
[18] Kwon H, Lee K B, Yang H R, et al.Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr[J]. Metall. Mater. Trans., 1997, 28A: 775
[19] Ning A G, Mao W W, Chen X C, et al.Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering[J]. Metals, 2017, 7: 70
[20] Oikawa T, Zhang J J, Enomoto M, et al.Influence of carbide particles on the grain growth of ferrite in an Fe-0.1C-0.09V alloy[J]. ISIJ Int., 2013, 53: 1245
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!