Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 894-900    DOI: 10.11901/1005.3093.2016.686
Current Issue | Archive | Adv Search |
Indentation Size Effect for the Hardness of B4C/TiB2 Ceramics
Weiming GUO(), Dawang TAN, Lixiang WU, Huatai LIN, Shanghua WU
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
Cite this article: 

Weiming GUO, Dawang TAN, Lixiang WU, Huatai LIN, Shanghua WU. Indentation Size Effect for the Hardness of B4C/TiB2 Ceramics. Chinese Journal of Materials Research, 2017, 31(12): 894-900.

Download:  HTML  PDF(2820KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Indentation size effect on the hardness measurement of hot-pressed 80%B4C/TiB2 and 20%B4C/TiB2 (in volume fraction) was investigated, while the indentation morphology was also characterized. In comparison with 20%B4C/TiB2, 80%B4C/TiB2 possesses higher relative density and hardness, but lower toughness. The two ceramics exhibit clearly the indentation size effect (ISE), whereby the measured hardness decreases with the increasing load. However, a slight increase of the measured hardness for 80%B4C/TiB2 with the increasing load, which may be ascribed to the crack occurrence for indentations during loading. The observed ISE-phenomena for the two ceramics can be described via several existing theory models, however among them the modified proportional specimen resistance model is the most suitable one. Accordingly, the ISE-degree for 80%B4C/TiB2 ceramic is slightly stronger than that for 20%B4C/TiB2 ceramic, while the true hardness of 80%B4C/TiB2 ceramic should be 4.4~6.5 GPa higher than that of 20%B4C/TiB2 ceramic.

Key words:  composites, B4C/TiB2, modeling, indentation size effect, microstructure, mechanical properties     
Received:  25 November 2016     
ZTFLH:  TQ174  
Fund: Supported by National Natural Science Foundation of China (Nos. 51674236 & 51034012)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.686     OR     https://www.cjmr.org/EN/Y2017/V31/I12/894

Sample B4C% TiB2/% Relative density /% Flexure strength/MPa Vickers hardness (98 N)/GPa Fracture toughness (98 N)/(MPam1/2)
80B20T 80 20 98.1 612 25.0±0.58 4.66±0.55
20B80T 20 80 95.5 585 18.3±0.41 5.89±0.40
Table 1  Composition (volume fraction) and mechanical properties of the samples
Fig.1  SEM micrographs of the samples (a) burnishing surface microstructure of 80%B4C/TiB2, (b) burnishing surface microstructure of 20%B4C/TiB2, (c) crack morphology of 80%B4C/TiB2, (d) crack morphology of 20%B4C/TiB2
Fig.2  Vickers Hardness dependent on test force for 80%B4C/TiB2 and 20%B4C/TiB2
Fig.3  Location and morphology of indentation at 0.98 N (a) 80%B4C/TiB2, (b) 20%B4C/TiB2
Fig.4  Indentation morphology of 80%B4C/TiB2 (a) 0.49 N; (b) 0.98 N
Sample HPSR /GPa HMPSR/GPa Hm /GPa
80B20T 24.0 22.6 25.2
20B80T 17.5 16.1 20.8
D-value 6.5 6.5 4.4
Table 2  True hardness of the samples derived from various ISE models
Fig.5  Functional relationship of samples’ ISE for various models (a) PSR approach; (b) MPSR approach; (c) Hv2 versus d -1of MFSL approach; (d) lgHv versus lgd of MFSL approach)
[1] T. J. Holmquist, G. R. Johnson, Response of boron carbide subjected to high-velocity impact,International Journal of Impact Engineering, 2008, 35(8): 742
[2] S. Chen, D. Z. Wang, J. Y. Huang, Z. F. Ren, Synthesis and characterization of boron carbide nanoparticles,Applied Physics A, 2004, 79(7): 1757
[3] A. Sinha, T. Mahata, B. P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,Journal of Nuclear Materials, 2002, 301(2-3): 165
[4] L. G. Jacobsohn, M. Nastasi, L. L. Daemen, Z. Jenei, P. Asoka-Kumar, Positron annihilation spectroscopy of sputtered boron carbide films,Diamond and Related Materials, 2005, 14(2): 201
[5] J. Y. Zhang, Z. Y. Fu, W. M. Wang, Fabrication of Titanium Diboride-Cu Composite by Self-High Temperature Synthesis plus Quick Press,Journal of Materials Science & Technology, 2005, 21(6): 841
[6] A. K. Suri, C. Subramanian, J. K. Sonber, T. S. R.Ch. Murthy, Synthesis and consolidation of boron carbide: a review,International Materials Reviews, 2010, 55(1): 4
[7] W. M. Wang, Z. Y. Fu, H. Wang, R. Z. Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics,Journal of the European Ceramic Society, 2002, 22(7): 1045
[8] H. R. Baharvandi, A. M.Hadian, Pressureless Sintering of TiB2-B4C Ceramic Matrix Composite,Journal of Materials Engineering and Performance, 2007, 17(6): 838
[9] S. Yamadaa, K. Hiraob, Y. Yamauchib, S. Kanzaki, High strength B4C-TiB2 composites fabricated by reaction hot-pressing,Journal of the European Ceramic Society, 2003, 23(7): 1123
[10] K. Sangwal, B. Surowska, P.B?aziak, Relationship between indentation size effect and material properties in the microhardness measurement of some cobalt-based alloys,Materials Chemistry and Physics, 2003, 80(2): 428
[11] H. Li, R. C.Bradt, The microhardness indentation load size effect in rutile and cassiterite single crystals,Journal of Materials Science, 1993, 28(4): 917
[12] J. H. Gong, J. J.Wu,Z. D.Guan, Examination of the Indentation Size Effect in Low-load Vickers Hardness Testing of Ceramics,Journal of the European Ceramic Society, 1999, 19(15): 2625
[13] A. Carpinteri, S.Puzzi, A fractal approach to indentation size effect,Engineering Fracture Mechanics, 2006, 73(15): 2110
[14] A. Nino, A. Tanaka, S. Sugiyama, H. Taimatsu, Indentation Size Effect for the Hardness of Refractory Carbides,Materials Transactions, 2010, 51(9): 1621
[15] A. Mukhopadhyay, G. B. Raju, B. Basu, A.K. Suri, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics,Journal of the European Ceramic Society, 2009, 29(3): 505
[16] K.Sangwal, Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends, Crystal Research and Technology, 2009, 44(10): 1019
[1] . Effect of BNZ Component on the Structure and Properties of KNN based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 0, (): 0-0.
[2] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[3] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[4] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[5] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[6] WANG Peng, LU Xilong, CAO Chun-e, CHEN Yunxia, SHEN Huarong, ZHANG Xu. Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit[J]. 材料研究学报, 2021, 35(9): 657-666.
[7] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[8] TANG Changbin, WANG Fei, NIU Hao, YU Lihua, XUE Juanqin, YIN Xiangyang. Properties of Ti-based PbO2 Electrocatalytic Anodes with an Arc Sprayed ZrN-interlayer[J]. 材料研究学报, 2020, 34(7): 527-534.
[9] LI Hongxia,LI Baowei,XU Pengfei,LIU Zhongxing. Influences of Heat Treatment Soaking Time on Crystallization and Properties of Tailings-based Glass-Ceramics[J]. 材料研究学报, 2020, 34(3): 209-216.
[10] WANG Guangwei,CHEN Hongzhen,LI Youfeng,XIE Bo,JIANG Zhongyuan. Influence of High Temperature Water Vapor on Characteristics of CO2 Electrochemical Sensor[J]. 材料研究学报, 2019, 33(9): 713-720.
[11] Qingmin WEI,Xiuying LI,Shihua XU,Guocong LIU,Guobao HUANG,Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors[J]. 材料研究学报, 2019, 33(5): 394-400.
[12] Lielin WANG,Yang ZENG,Hua XIE,Sihao DENG,Xingping LI,Facheng YI,Shuqing JIANG,Yinhang ZHOU. Liquid Synthesis and Characterization of Nanosized Cubic Lithium Fluoride Particles[J]. 材料研究学报, 2019, 33(4): 271-276.
[13] Wanli YANG, Lina DAI, Zhongqi SHI, Zhichao XIAO, Xuhui ZHANG. Effect of Infiltration- and Pyrolyzation-Treatment on Mechanical Properties of Pressureless Sintered SiC/h-BN Ceramics[J]. 材料研究学报, 2017, 31(8): 635-640.
[14] Bijun FANG, Xing LIU, Zhenqian ZHANG, Zhihui CHEN, Jianning DING, Xiangyong ZHAO, Haosu LUO. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2017, 31(4): 248-254.
[15] YANG Qinghua LI Hongwei WANG Huanping MA Hongping LEI Ruoshan XU Shiqing**. Influence of Y2O3 and Nano-AlN Powders on the Sintering and Thermal Conductivity of AlN Ceramics[J]. 材料研究学报, 2013, 27(4): 342-348.
No Suggested Reading articles found!