Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 657-666    DOI: 10.11901/1005.3093.2021.005
ARTICLES Current Issue | Archive | Adv Search |
Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit
WANG Peng1, LU Xilong1,2(), CAO Chun-e1(), CHEN Yunxia1,2, SHEN Huarong1, ZHANG Xu1
1.College of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
2.Jingdezhen Key Laboratory of Environmental Ceramic Materials, Jingdezhen 333000, China
Cite this article: 

WANG Peng, LU Xilong, CAO Chun-e, CHEN Yunxia, SHEN Huarong, ZHANG Xu. Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit. Chinese Journal of Materials Research, 2021, 35(9): 657-666.

Download:  HTML  PDF(4149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nucleation-growth type liquid-liquid nano-phase partitioned low-temperature frits were prepared via a two-step process: high-temperature melting and low-temperature heat treatment. The influence of the phase-partition on the gloss, gloss loss, microhardness and other properties of the ABS* lead-free low-temperature frit were assessed by means of high temperature microscopy, differential scanning calorimetry, X-ray diffractometer, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results show that the size, volume fraction and distribution of the dispersed phase can be effectively adjusted with the aid of appropriate heat treatment processes. The heat-treated frits present microhardness and wear resistance much higher than those of the water-quenched ones. With the increasing heat treatment temperature, the gloss loss of the frits experienced a "Z" shaped variation and the microhardness experienced a reverse trend. Being heat treated at 630℃, the frit presents the smallest gloss loss of 26.4%, the largest hardness of 6202 MPa, whilst its wear resistance can be classified as grade 2 (750 revolutions). The size and the volume of the phase-partition generated dispersive droplets show a downward parabola-like variation as the heat treatment temperature increases. The phase partition facilitates the enrichment of alkali, cerium and boron in the dispersed phase. As the size and volume fraction of the dispersed phases in the frit increases, the free oxygen in the continuous matrix decreases, that is, the O/Si ratio decreases, while the amount of [SiO4] and bridge oxygen increases and the polymerization degree of the network increases. Besides the frit has a dense surface layer, namely the phase-partitioning structure exists inside the frit. The phase rich in alkali, cerium and boron dispersed and embedded in the Si-rich continuous matrix as droplets, in other words the former is protected by the later one. Therefore, the wear resistance and microhardness of the frits were enhanced .

Key words:  inorganic non-metallic materials      glass and amorphous      low-temperature frit      heat treatment      phase separation      alkali borosilicate     
Received:  13 January 2021     
ZTFLH:  TQ174.4  
Fund: National Natural Science Foundation of China(51862019);Foundation of Jiangxi Provincial Department of Education(GJJ160883);Science and Technology Project of Jingdezhen(20182GYDZ011-16)
About author:  CAO Chun-e, Tel: 13707983241, E-mail: tycce@163.com
LU Xilong, Tel: 13979831378, E-mail: luxilong@jci.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.005     OR     https://www.cjmr.org/EN/Y2021/V35/I9/657

OxideSiO2B2O3Al2O3CeO2CaOK2ONa2OLi2O
R053.2026.075.051.413.623.472.664.48
Table 1  Chemical composition of baseline frit R0 (mol fraction, %)
SamplesR0R1R2R3R4R5
Initial Temperature/℃Water quenching550550550550550
Soking time/min-120120120120120
Heating rate /℃/min-00.30.611.3
Final Temperature/℃-550590630670710
Soking time/min-120120120120120
Table 2  Non-isothermal heat treatment system for frit R0
Fig.1  DSC curve of frit R0
Fig.2  XRD patterns of some samples
Fig.3  High-temperature microscope photo of frit R0
Fig.4  The area of front projected test piece silhouettes vs temperature
CodeR0R1R2R3R4R5
Temperature/℃Water quenching550590630670710
Intial gloss109103108110112106
Gloss after grinding587175816360
Gloss loss/%46.731.130.526.443.743.4
Vickers hardness/MPa495761136158620250655005
wear resistance(750 revolutions)222222
Table 3  The effect of non-isothermal heat treatment on the performance of frits
Fig.5  Gloss loss vs final treatment temperatures
Fig.6  Vickers hardness vs different final treatment temperatures
Fig.7  SEM cross-section images of frit samples R0 (a), R1 (b), R3 (c) and R4 (d)
Fig.8  Frit phase separation droplet size distribution R0 (a), R1 (b), R3 (c) and R4 (d)
Fig.9  Volume fraction and average size of phase-separated droplets in frit
Fig.10  TEM photo of sample R0
Fig.11  TEM photo of sample R3
Fig.12  TEM images and EDS spectra of sample R3
Element (%, mass fraction)NaAlSiKCaCuCeOTotal
Spot A0.713.2821.410.956.7718.6711.1537.06100
Spot B0.763.9326.340.754.9613.369.0640.83100
Spot C0.185.5129.571.081.8015.552.4043.92100
Table 4  The composition of three points A, B, C in the TEM image of R3
Fig.13  SEM cross-section images of sample R3
Fig.14  FTIR spectra of samples
1 Wheaton B R, Clare A G. Evaluation of phase separation in glasses with the use of atomic force microscopy [J]. J. Non-Cryst. Solids, 2007, 353(52-54): 4767
2 Morizet Y, Alech Q. Estimation of viscosities in the CaO-SiO2 and CaO-Al2O3-SiO2 melt systems using high temperature hot stage microscopy [J]. Phys. Chem. Glasses, 2014, 55(1): 41
3 Northwest Institute of Light Industry. Glass Technology [M]. Beijing: China Light Industry Press, 2006
西北轻工业学院. 玻璃工艺学 [M]. 北京: 中国轻工业出版社, 2006
4 Werner V. Glass Chemistry [M]. Berlin: Springer-Verlag, 1994
5 Duminis T, Shahid S, Hill R G. Apatite glass-ceramics: a review [J]. Frontiers in Materials, 2017, 3: 1
6 Cao C E, Gu X Y, Wang Y X, et al. Inorganic Material Testing Technology [M]. Nanchang: Jiangxi Universities and Colleges Press, 2011
曹春娥, 顾幸勇, 王艳香等. 无机材料测试技术 [M]. 南昌: 江西高校出版社, 2011
7 Shelby J E. Introduction to Glass Science and Technology [M]. Cornwall: The Royal Society of Chemistry, 2005
8 Tovhowani I K, Sharon K, Stephan A H. Effect of Al2O3 on phase separation and microstructure of R2O-B2O3-Al2O3-SiO2 glass system (R=Li, Na) [J]. J. Non-Cryst. Solids, 2020, 531: 119849
9 Aytug T, Simpson J T, Lupini A R, et al. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films [J]. Nanotechnology, 2013, 24(31): 315602
10 Minamiyama S I, Daiko Y, Mineshige A, et al. Spinodal-type phase separation and proton conductivity of Al2O3-doped porous glasses [J]. J. Ceram. Soc. Jpn., 2010, 118(1384): 1131
11 Ertu E B, Ahmetoglu C V, Ozturk A. Production and properties of phase separated porous glass [J]. Ceram. Int., 2019, 46(4): 4947
12 Smedskjaer M M, Yue Y. Inward and outward diffusion of modifying ions and its impact on the properties of glasses and glass-ceramics [J]. Int. J. Appl. Glass Sci., 2011, 2(2): 117
13 Smedskjaer M M, Mauro J C, Yue Y. Cation diffusivity and the mixed network former effect in borosilicate glasses [J]. J. Phys. Chem. B, 2015, 119(23): 7106
14 Wang P. Study on high-quality low-temperature alkali borosilicate system frit [D]. Jingdezhen: Jingdezhen Ceramic Institute, 2012
汪鹏. 高品质碱硼硅系统低温熔剂的研究 [D]. 景德镇: 景德镇陶瓷学院, 2012
15 Standardization Administration of the People's Republic of China. , Ceramic tiles test method Part 7: Determination of the surface wear resistance of glazed tiles [S]
中国国家标准化管理委员会. , 陶瓷砖试验方法第7部分:有釉砖表面耐磨性的测定[S]
16 Smiljanić S V, Grujić S R, Tošić M B, et al. Crystallization and sinterability of glass-ceramics in the system La2O3-SrO-B2O3 [J]. Ceram. Int., 2014, 40(1): 297
17 Zhang Q X, Li W L, Zhuang H R. Sintering at low temperature and performance for AlN/glass composites [J]. Chin. J. Mater. Res., 2003, 17(1): 79
张擎雪, 李文兰, 庄汉锐. AlN/玻璃复合材料的低温烧结和性能 [J]. 材料研究学报, 2003, 17(1): 79
18 Fernandes H R, Tulyaganov D U, Pascual M J, et al. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system [J]. J. Eur. Ceram. Soc., 2012, 32(10): 2283
19 Amorós J L, Gómeztena M P, Moreno A, et al. Dissolution, crystallisation, and sintering of a raw matt glaze for porcelain tiles [J]. Adv. Mater. Res., 2013, 704: 132
20 Feng T, Lu X L, Cao C E, et al. Effect of heat treatment time on alkali resistance of pollution-free overglaze frits [J]. China Ceramics, 2017, 53(1): 32
冯涛, 卢希龙, 曹春娥等. 热处理时间对无公害釉上熔剂耐碱性的影响 [J]. 中国陶瓷, 2017, 53(1): 32
21 Häßler J, Rüssel C. Self-organized growth of sodium borate-rich droplets in a phase-separated sodium borosilicate glass [J]. Int. J. Appl. Glass Sci., 2017, 8: 124
22 Dragic P, Jagannathan S, Ackerman L, et al. Random lasing from optical fibers with phase separated glass cores [J]. Opt. Express, 2020, 28(15): 22049
23 Veksler I V, Dorfman A M, Dingwell D B, et al. Element partitioning between immiscible borosilicate liquids: A high-temperature centrifuge study [J]. Geochim. Cosmochim. Acta, 2002, 66(14): 2603
24 El-Egili K. Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses [J]. Phys. B, 2003, 325: 340
25 Dias J, Melo G, Lodi T, et al. Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses [J]. J. Rare Earths, 2016, 34(5): 521
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[4] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[5] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[6] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[9] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[11] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[12] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[13] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[14] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[15] XU Yang, LI Yanrui, LIU Baosheng, LIU Wen, ZHANG Shaohua, WEI Yinghui. Precipitation of Second Phase in Non-oriented Silicon Steel[J]. 材料研究学报, 2023, 37(1): 47-54.
No Suggested Reading articles found!