Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 527-534    DOI: 10.11901/1005.3093.2019.578
ARTICLES Current Issue | Archive | Adv Search |
Properties of Ti-based PbO2 Electrocatalytic Anodes with an Arc Sprayed ZrN-interlayer
TANG Changbin1(), WANG Fei1, NIU Hao1, YU Lihua1, XUE Juanqin1, YIN Xiangyang2
1.School of Metallurgy and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Shaanxi Xinxing Thermal Spraying Technology Co. Ltd. , Xi'an 710000, China
Cite this article: 

TANG Changbin, WANG Fei, NIU Hao, YU Lihua, XUE Juanqin, YIN Xiangyang. Properties of Ti-based PbO2 Electrocatalytic Anodes with an Arc Sprayed ZrN-interlayer. Chinese Journal of Materials Research, 2020, 34(7): 527-534.

Download:  HTML  PDF(7000KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ti/ZrN/PbO2 electrodes were prepared via an arc spraying ZrN-interlayer on the Ti-substrate and then followed by anodic electrodeposition of β-PbO2 surface coating. By taking the plain Ti/PbO2 electrode as comparison, the prepared electrodes were characterized in terms of microstructure, surface roughness, coating adhesion, accelerated life assessment, electrochemical performance and electro-oxidation of phenol. The results show that the accelerated life-time for Ti/ZrN/PbO2 anodes was obviously prolonged to 8 times of that for the plain Ti/PbO2 electrode. Meanwhile, the electrocatalytic degradation activity of this anode for the organic pollutants was enhanced. This is directly related to the improvement of the conductivity of the electrode brought by the arc sprayed ZrN interlayer and which then enables the layer of electrodeposited PbO2 to be significantly refined and thicker with much flat surface and better adhesive to the substrate, as well as more active sites caused by the rough surface characteristics of this arc spraying intermediate layer.

Key words:  surface and interface in the materials      titanium-based lead dioxide anode      interlayer      zirconium nitride arc spray coating      electro-oxidation      life extension     
Received:  10 December 2019     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(51874227);the Natural Science Basic Research Plan of Shaanxi Province(2018JM5131);the Natural Science Basic Research Plan of Shaanxi Province(2018JM5139)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.578     OR     https://www.cjmr.org/EN/Y2020/V34/I7/527

Fig.1  Schematic diagram of ZrN interlayer prepared by arc spraying (1: spraying power supply; 2: wire disk; 3: metal wire; 4: wire feeding roller; 5: conductive block; 6: conductive nozzle; 7: air nozzle; 8: compressed air; 9: arc; 10: spraying particle flow; 11: ZrN coating; 12: titanium substrate)
Fig.2  Results analysis of PbO2coated electrodes fabricated by electrodepositing and ZrN interlayer prepared by arc spraying (a) Morphology of ZrN interlayer (b) XRD spectrum of the interlayer (c) surface morphology of Ti/ZrN/PbO2 electrode (d) XRD comparison of PbO2 electrode with and without the interlayer (E) sur- face morphology of Ti/PbO2 electrode (f) crossed-morphology of Ti/ZrN/PbO2 electrode (g) surface rough- ness comparison of Ti/ZrN/PbO2 electrode
Fig.3  Cell voltage vs. time variation of electrodes in accelerated life test
ElectrodesPreparation of interlayerTest conditionLife timeRef
Ti/ZrN/PbO2Arc-spraying1 A/cm2, 1 mol/L H2SO4, temperature below 50℃160 hThis paper
Ti/Sb-SnO2/β-PbO2Spray pyrolysis4 A/cm2, 1 mol/L H2SO4,temperature below 60℃30 h[14]
Ti/Ni/β-PbO2Cathodic electroplating1 A/cm2, 1 mol/L H2SO4, temperature below 50℃40 h[15]
Ti/MnO2/β-PbO2Electrodeposition4 A/cm2, 1 mol/L H2SO4, temperature below 60℃47 h[16]
Table 1  Lifetime comparison between this study and Ti-based PbO2 electrodes reported in literatures
Fig.4  Electrocatalytic activity site test (a) and Nyquist plot of kinetics process (b) of oxygen evolution reaction for Ti/ZrN/PbO2 electrode
Electrodes

Rs

/Ω·cm2

Qdl

-1cm2·sn

QnRct/Ω·cm2
Ti/PbO25.610.001020.6104175.60
Ti/ZrN/PbO22.050.002570.817449.11
Table 2  EIS impedance fitting results of oxygen evolution reaction
Fig.5  Comparison of the removal rate of phenol and COD vs. time (a) and kinetic fitting (b) during the electrocatalytic degradation process of phenol wastewater
TypeElectrodesFitted equationk/min-1R2
COD removalTi/PbO2Y=0.00462X-0.049550.00460.995
Ti/ZrN/PbO2Y=0.0063X-0.038460.00630.992
Phenol degradationTi/PbO2Y=0.01048X+0.048170.0100.985
Ti/ZrN/PbO2Y=0.01789X-0.324430.0180.994
Table 3  Degradation kinetics comparison of different electrodes
[1] Chen B M, Wang S C, Liu J H, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc eletrowinning [J]. Corrosion Science, 2018, 144: 136
doi: 10.1016/j.corsci.2018.08.049
[2] He J X, Zhou J C,Chen K N. Electrochemical synthesis of butyl butyrate on conductive oxide electrode [J]. Electrochemistry, 1998,4 (4): 423
(何俊翔, 周锦成, 陈康宁. 导电氧化物电极上丁酸丁酯电化学合成的研究 [J]. 电化学, 1998, 4(4): 423)
[3] Yang W T, Yang W H, Fu F. Preparation and Characterization of PbO2 electrode modified with a mixture of PEG and CPB [J]. Chinese Journal of Materials Research, 2012, 26(1): 8
(杨武涛, 杨卫华, 付芳. PEG/CPB复配改性二氧化铅电极的制备和性能 [J]. 材料研究学报, 2012, 26(1): 8)
[4] Bian X Z, Xia Y, Zhan T T, et al. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: Electrode characterization, operational parameters optimization and degradation mech-anism [J]. Chemosphere, 2019, 233: 762
pmid: 31200136
[5] Duan X Y, Zhao C M, Liu W, et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol [J]. Electrochimica Acta, 2017, 240: 424
doi: 10.1016/j.electacta.2017.04.114
[6] Zhao G H, Zhang Y G, Lei Y Z, et al. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surface, high oxygen evolution potential, and oxidation capability [J]. Environmental science & technology, 2010, 44 (5): 1754
pmid: 20180602
[7] Zhang Z X. Application of titanium coated electrode for forty years [J]. 2007, 26(1): 50
(张招贤. 涂层电极的40年 [J]. 电镀与涂层, 2007, 26(1): 50)
[8] Zhang W L, Kong H S, Lin H B, et al. Fabrication characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate [J]. Journal of Alloys and Compounds, 2015, 650: 705
doi: 10.1016/j.jallcom.2015.07.222
[9] Jiang Y, Hu Z, Zhou Met al. Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode [J]. Separation & Purification Technology, 2014, 128(325): 67
[10] Li X L, Xu H, Yan W. Electrochemical oxidation of aniline by a novel Ti/TiOxHy/Sb-SnO2 electrode [J]. Chinese Journal of Catalysis, 2016, 37(11): 1860
doi: 10.1016/S1872-2067(16)62555-X
[11] Chen B M, Guo Z C, Yang X W, et al. Progress on electrodeposition of doped-PbO2 surface [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1711
(陈步明, 郭忠诚, 杨显万等. 电沉积掺杂二氧化铅表面的研究进展 [J]. 中国有色金属学报, 2008, 18(9): 1711)
[12] Yang H T, Chen B M, Guo Z C, et al. Effects of current density on preparation and performance of Al/conductive coing/α-PbO2-CeO2-TiO2/β-PbO2-MnO2-WC-ZrO2 composite electrode materials [J]. Transaction of Nonferrous Metals Society of China, 2014: 24(10): 3394
doi: 10.1016/S1003-6326(14)63482-8
[13] Sun F M, Pan J Y, Luo Q F. Preparation and properties of lead dioxide anode with platinum interlayer [J]. Materials Protection, 2006, 39(1): 53
(孙凤梅, 潘建跃, 罗启富. 含铂中间层二氧化铅阳极的制备及其性能 [J]. 材料保护, 2006, 39(1): 53)
[14] Wang Y Q,Gu B,Xu W L,et al. Electrochemical oxidation of Phenol on Ti-Based PbO2 Electrodes [J]. Rare Metal Materials and Engineering, 2007, 36(5): 874
(王雅琼, 顾彬, 许文林等. 钛基PbO2电极上苯酚的电化学氧化 [J]. 稀有金属材料与工程, 2007, 36(5): 874)
[15] Tang C B, Zheng C, Yu L H, et al. Effect of electroplating nickel inter-layer on performance of Ti-based lead dioxide electrodes [J]. Rare Metal Materials and Engineering, 2019, 48(1): 143
(唐长斌, 郑超, 于丽花等. 电镀镍中间层对钛基二氧化铅阳极性能的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 143)
[16] Xu L, Zhao F, Nong J Y, et al. Preparation, characterization and electro-catalytic properties investigation of lead dioxide electrode [J]. Chinese Journal of Environmental Engineering, 2008, 2(7): 97
(徐亮, 赵芳, 农佳莹等. 二氧化铅电极的制备、表征及其电催化性能研究 [J]. 环境工程学报, 2008, 2(7): 97)
[17] Liang Y J, Che M C. Handbook of Thermodynamics of Inorganic Materials [M]. Shen Yang: Northeast University Press, 1993
(梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993)
[18] Sirés I., Low C. T. J., Ponce-de-León C., et al. The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions [J]. Electrochimica Acta, 2010, 55(6): 2163
doi: 10.1016/j.electacta.2009.11.051
[19] Xia Y, Dai Q, Chen J. Electrochemical degradation of aspirin using a Ni doped PbO2 electrode [J]. Journal of Electroanalytical Chemistry, 2015, 744: 117
doi: 10.1016/j.jelechem.2015.01.021
[20] Li X, Xu H, Yan W. Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2, electrode [J]. Journal of Alloys and Compounds, 2017, 718: 386
doi: 10.1016/j.jallcom.2017.05.147
[21] Song S, Fan J, He Z, et al. Electrochemical degradation of azo dye C. I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes [J]. Electrochimica Acta, 2010, 55(11): 606
[22] Amado-Piña Deysi, Roa-Morales Gabriela, Barrera-Díaz Carlos, et al. Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol degradation [J]. Fuel, 2017, 198: 82
doi: 10.1016/j.fuel.2016.10.117
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!