Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 248-254    DOI: 10.11901/1005.3093.2016.378
ARTICLES Current Issue | Archive | Adv Search |
Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics
Bijun FANG1(), Xing LIU1, Zhenqian ZHANG1, Zhihui CHEN1, Jianning DING1(), Xiangyong ZHAO2, Haosu LUO3
1 School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China
2 Department of Physics, Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai 200234, China
3 Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, China
Cite this article: 

Bijun FANG, Xing LIU, Zhenqian ZHANG, Zhihui CHEN, Jianning DING, Xiangyong ZHAO, Haosu LUO. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics. Chinese Journal of Materials Research, 2017, 31(4): 248-254.

Download:  HTML  PDF(1206KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ferroelectric phase transition characteristics of the (Ba0.84Ca0.15Sr0.01)(Ti0.90Zr0.09Sn0.01)O3 (BCSTZS) ceramics were investigated by the temperature-dependent Raman spectroscopy and electrical performance. The Raman active modes of the BCSTZS ceramics can be assigned as modes such as v3(LO), v3(TO), v4(LO), v2(LO,TO), v1(TO) and v1(LO). The modes of v3(LO) and v4(LO) disappear abruptly when the temperature extends beyond 80 °C, indicating that the phase structure of the BCSTZS ceramics transforms from tetragonal ferroelectric (FET) phase to cubic paraelectric (PC) phase. The intensity and line width of Raman modes v3(TO), v2(LO,TO), v1(TO) and v1(LO) exhibit notably anomalous change around room temperature (20℃) and 80℃, showing the signal of FEO-FET (O indicating the orthorhombic ferroelectric phase) and FET-PC phase transitions. The existence of Raman active-modes, maximum strain and d33* values above the TC temperatures indicates that the local polar micro-regions still retain in the cubic matrix phase. With the increase of temperature the resonant (fr) and antiresonant (fa) frequencies approach to each other, the fa shows a discontinuous jump around TC, and the maximum strain and large signal d33* values decrease gradually, proving further the occurrence of the ferroelectric phase transition.

Key words:  inorganic non-metallic materials      lead-free piezoelectric ceramics      ferroelectric phase transition      Raman spectra      BCSTZS      electrical properties     
Received:  04 July 2016     
ZTFLH:  TQ174  
Fund: Supported by National Natural Science Foundation of China (Nos.51577015 & 11304333), Prospective Joint Research Project of Jiangsu Province (No.BY2014037-06), Major Projects of Natural Science Research in Universities in Jiangsu Province (No.15KJA43002), and Priority Academic Program Development of Jiangsu Higher Education Institutions

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.378     OR     https://www.cjmr.org/EN/Y2017/V31/I4/248

Fig.1  Temperature dependent Raman spectra of the BCSTZS ceramics upon heating
Fig.2  Raman spectra of the BCSTZS ceramics and the deconvolution of multiple Lorentzian peaks at 0℃ (a), 20℃ (b), 90℃ (c) and 120℃ (d)
Fig.3  Variations of wavenumber in the Raman modes as a function of temperature
Fig.4  The intensity of v3(TO) (a),v2(LO, TO) (b),v1(TO) (c) and v1(LO) (d) Raman modes at different temperatures upon heating
Fig.5  Line width of v3(TO) (a), v2(LO, TO) (b), v1(TO) (c) and v1(LO) (d) Raman modes at different temperatures upon heating
Fig.6  Temperature dependent resonant (fr) and antiresonant (fa) frequencies of the BCSTZS ceramics upon heating
Fig.7  The bipolar (a) and unipolar (b) strain curves, I-E hysteresis loops measured at 20 kV/cm and different temperatures; Temperature-dependent maximum strain and d33* values (d)
[1] Tran-Huu-Hue L P, Levassort F, Felix N, et al. Comparison of several methods to characterise the high frequency behaviour of piezoelectric ceramics for transducer applications[J]. Ultrasonics, 2000, 38: 219
[2] Chu S Y, Chen T Y, Tsai I T, et al.Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device[J]. Sensor. Actuat.: Phys., 2004, 113A: 198
[3] Setter N, Waser R.Electroceramic materials[J]. Acta Mater., 2000, 48: 151
[4] Haertling G H.Ferroelectric ceramics: history and technology[J]. J. Am. Ceram. Soc., 1999, 82: 797
[5] R?del J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J. Am. Ceram. Soc., 2009, 92: 1153
[6] Li J F, Wang K, Zhu F Y, et al.(K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. J. Am. Ceram. Soc., 2013, 96: 3677
[7] Bechmann R.Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations[J]. J. Acoust. Soc. Am., 1956, 28: 347
[8] Liu W F, Ren X B.Large piezoelectric effect in Pb-free ceramics[J]. Phys. Rev. Lett., 2009, 103: 257602
[9] Bao H X, Zhou C, Xue D Z, et al.A modified lead-free piezoelectric BZT-xBCT system with higher TC[J]. J. Phys. D: Appl. Phys., 2010, 43: 465401
[10] Gao J H, Hu X H, Zhang L, et al.Major contributor to the large piezoelectric response in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion[J]. Appl. Phys. Lett., 2014, 104: 252909
[11] Ehmke M C, Ehrlich S N, Blendell J E, et al.Phase coexistence and ferroelastic texture in high strain (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics[J]. J. Appl. Phys., 2012, 111: 124110
[12] Gao J H, Xue D Z, Wang Y, et al.Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics[J]. Appl. Phys. Lett., 2011, 99: 092901
[13] Keeble D S, Benabdallah F, Thomas P A, et al.Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)[J]. Appl. Phys. Lett., 2013, 102: 092903
[14] Tian Y, Chao X L, Jin L, et al.Polymorphic structure evolution and large piezoelectric response of lead-free (Ba, Ca)(Zr, Ti)O3 ceramics[J]. Appl. Phys. Lett., 2014, 104: 112901
[15] Zhang L, Zhang M, Wang L, et al.Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution[J]. Appl. Phys. Lett., 2014, 105: 162908
[16] Singh R, Kambale K, Kulkarni A R, et al.Structure composition correlation in KNN-BT ceramics-An X-ray diffraction and Raman spectroscopic investigation[J]. Mater. Chem. Phys., 2013, 138: 905
[17] Rout D, Moon K S, Rao V S, et al.Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy[J]. J. Ceram. Soc. Japan, 2009, 117: 797
[18] Luo L, Ge W W, Li J F, et al.Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition[J]. J. Appl. Phys., 2011, 109: 113507
[19] Schütz D, Deluca M, Krauss W, et al.Lone-pair-induced covalency as the cause of temperature and field-induced instabilities in bismuth sodium titanate[J]. Adv. Funct. Mater., 2012, 22: 2285
[20] Liu X, Chen Z H, Fang B J, et al.Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping[J]. J. Alloy. Compd., 2015, 640: 128
[21] Liu X, Wu D, Chen Z, et al.Ferroelectric, dielectric and pyroelectric properties of Sr and Sn co-doped BCZT lead free ceramics[J]. Adv. Appl. Ceram., 2015, 114: 436
[22] Perry C H, Hall D B.Temperature dependence of the Raman spectrum of BaTiO3[J]. Phys. Rev. Lett., 1965, 15: 700
[23] Souza I A, Gurgel M F C, Santos L P S, et al. Theoretical and experimental study of disordered Ba0.45Sr0.55TiO3 photoluminescence at room temperature[J]. Chem. Rev., 2006, 322: 343
[24] Souza I A, Sim?es A Z, Longo E, et al.Synthesis of Ba0.5Sr0.5-(Ti0.80Sn0.20)O3 prepared by the soft chemical method[J]. Mater. Lett., 2007, 61: 4086
[25] Zhu L F, Zhang B P, Zhao L, et al.High piezoelectricity of BaTiO3-CaTiO3-BaSnO3 lead-free ceramics[J]. J. Mater. Chem., 2014, 2C: 4764
[26] Ramana V, Mahajan E A, Gra?a M P F, et al. Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics[J]. Mater. Res. Bull., 2013, 48: 4395
[27] Shen M R, Siu G G, Xu Z K, et al.Raman spectroscopy study of ferroelectric modes in [001]-oriented 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals[J]. Appl. Phys. Lett., 2005, 86: 252903
[28] Cheng J, Yang Y, Tong Y H, et al.Study of monoclinic-tetragonal-cubic phase transition in Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystals by micro-Raman spectroscopy[J]. J. Appl. Phys., 2009, 105: 053519
[29] Huang L Z, Li G R, Fu D S, et al.Large and temperature-independent piezoelectric response in Pb(Mg1/3Nb2/3)O3-BaTiO3-PbTiO3[J]. Appl. Phys. Lett., 2012, 101: 192901
[30] Zhang W J, Li W W, Chen X G, et al.Phonon mode and phase transition behaviors of (1-x)PbSc1/2Ta1/2O3-xPbHfO3 relaxor ferroelectric ceramics determined by temperature-dependent Raman spectra[J]. Appl. Phys. Lett., 2011, 99: 041902
[31] Dai Y J, Zhang X W, Zhou G Y.Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics[J]. Appl. Phys. Lett., 2007, 90: 262903
[32] Svitelskiy O, Toulouse J, Yong G, et al.Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal[J]. Phys. Rev., 2003, 68B: 104107
[33] Liu X, Wu D, Fang B J, et al.Aging characteristics of 0.7Pb-(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals with different crystal orientations[J]. Appl. Phys., 2015, 119A: 1469
[34] Yan H X, Inam F, Viola G, et al.The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops[J]. J. Adv. Dielectrics., 2011, 1: 107
[35] Wang K, Hussain A, Jo W, et al.Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics[J]. J. Am. Ceram. Soc., 2012, 95: 2241
[36] Jo W, Dittmer R, Acosta M, et al.Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective[J]. J. Electroceram., 2012, 29: 71
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!