Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 765-772    DOI: 10.11901/1005.3093.2016.581
ARTICLES Current Issue | Archive | Adv Search |
Influence of Ionic Liquid [Emim]BF4 on Nucleation and Growth of PbO2 during Electrodeposition
Juanqin XUE(), Jian ZHANG, Lei WANG, Lihua YU, Changbin TANG, Qiang BI
School of Metallurgical Engineering, Xi'an University Of Architecture and Technology, Xi'an 710055, China
Cite this article: 

Juanqin XUE, Jian ZHANG, Lei WANG, Lihua YU, Changbin TANG, Qiang BI. Influence of Ionic Liquid [Emim]BF4 on Nucleation and Growth of PbO2 during Electrodeposition. Chinese Journal of Materials Research, 2017, 31(10): 765-772.

Download:  HTML  PDF(1140KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of 1- ethyl -3- methyl imidazole tetrafluoroborate ([Emim]BF4) on the nucleation and growth of PbO2 coating on glassy carbon electrode was studied during the electrodeposition process by means of in-situ cyclic voltammetry, chronopotentiometry and chronoamperometry with an electrochemical workstation. Besides, the surface morphology and crystal structure of PbO2 coating was characterized by SEM and XRD. The results show that PbO2 electrodeposition process follows the three-dimensional continuous nucleation model, the addition of ionic liquid in the electrolyte does not significantly change the electrocrystallization mechanism of PbO2, but can inhibit the nucleation and crystal growth rate of PbO2, so as to decrease the PbO2 grain size, densify the coating and enhance the electrochemical performance of the resulted PbO2 electrode.

Key words:  metallic materials      PbO2      electrodeposition      nucleation growth      ionic liquid [Emim]BF4     
Received:  08 October 2016     
ZTFLH:  TQ153  
Fund: Supported by National Natural Science Foundation of China (Nos.51478379 & 51408468), Major Basic Research Projects of Shaanxi Provincial Natural Science Foundation (No.2017ZDJC-25) and Special Research Project of Shaanxi Provincial Department of Education (No.16JK1422)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.581     OR     https://www.cjmr.org/EN/Y2017/V31/I10/765

Fig.1  Cyclic voltammetry curves of PbO2 in the electrodeposition on glassy carbon (GC) electrode
Fig.2  Potential time transient curves of PbO2 in the electrodeposition process on GC electrode
Fig.3  Current time transient curves of PbO2 in the electrodeposition process on GC electrode under different over potentials: (a) blank, (b) 50 mg/L[Emim]BF4
Fig.4  Comparisons current time transient non-dimensional curves of PbO2 in the electrode electrodeposition on GC under different over potentials and the theoretical nucleation curves (a) blank, (b) 50 mg/L[Emim]BF4
η /
mV
tm/s 10-3Im
/mAcm-2
10-7Im2tm
/A2scm-4
10-10 K 10-7D
/cm2s-1
104AN0
/cm-2s-1
A/s-1 106 Ns/cm-2
10 11.00 401.662 17.75 20.9 2.04 3.26 1.04 2.08
20 7.00 468.754 15.38 24.3 1.77 9.29 1.14 3.77
30 5.25 563.833 16.69 29.3 1.92 15.20 1.68 4.63
40 4.50 605.085 16.50 31.4 1.90 20.90 1.76 5.45
50 3.25 694.720 15.70 36.1 1.81 42.10 2.73 7.93
Table 1  Kinetic parameters obtained from transient current curves of PbO2 during electrode deposition on GC electrode
η /
mV
tm/s 10-3 Im
/mAcm-2
10-7Im2tm
/A2scm-4
10-10K 10-7D
/cm2s-1
104AN0
/cm-2s-1
A/s-1 106 Ns/cm-2
20 7.75 482.556 18.05 25.05 2.07 6.48 1.08 2.91
30 6.25 520.817 16.95 27.04 1.95 10.58 1.36 3.83
40 4.00 608.459 14.80 31.60 1.71 29.45 2.03 6.82
50 3.50 647.641 14.70 33.62 1.69 38.92 2.31 7.89
60 2.50 805.364 16.20 41.81 1.87 68.94 3.24 9.96
Table 2  Kinetic parameters of transient current curves of PbO2 during electrode deposition in the bath with 50 mg/L[Emim]BF4
Fig.5  Relationships between crystal growth rate and over potential
Fig.6  Relationships between the nucleation rate constant and the over potential
Fig.7  Relationships between the saturated nucleation density and the over potential
Fig.8  SEM morphologies of PbO2 planted on Ti in different plating solutions: (a, c) blank, (b, d) 50 mg/L[Emim]BF4
Fig.9  SEM cross sections of PbO2 planted on Ti in different plating solutions (a, c) blank, (b, d) 50 mg/L[Emim]BF4
Fig.10  XRD spetra of PbO2 coatings electroplated in different plating solutions
[1] Andrade L S, Ruotolo L A M, Rocha-Filho R C, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J]. Chemosphere, 2007, 66: 2035
[2] Chen G H.Electrochemical technologies in wastewater treatment[J]. Sep. Purif. Technol, 2004, 38: 11
[3] Feng Y J, Li X Y.Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Res., 2003, 37: 2399
[4] Liu Y, Liu H L, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol[J]. Electrochim. Acta, 2011, 56: 1352
[5] An H, Li Q, Tao D J, et al.The synthesis and characterization of Ti/SnO2-Sb2O3/PbO2 electrodes: the influence of morphology caused by different electrochemical deposition time[J]. Appl. Surf. Sci., 2011, 258: 218
[6] Li X H, Pletcher D, Walsh F C.Electrodeposited lead dioxide coatings[J]. Chem. Soc. Rev., 2011, 40: 3879
[7] Liu Y, Liu H L, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol[J]. Electrochim. Acta, 2011, 56: 1352
[8] Wang Y Q, Gu B, Xu W L, et al.Electrochemical oxidation of phenol on Ti-based PbO2 electrodes[J]. Rare Met. Mater. Eng., 2007, 36: 874(王雅琼, 顾斌, 许文林等. 钛基PbO2电极上苯酚的电化学氧化[J]. 稀有金属材料与工程, 2007, 36: 874)
[9] Ghaemi M, Ghafouri E, Neshati J.Influence of the nonionic surfactant Triton X-100 on electrocrystallization and electrochemical performance of lead dioxide electrode[J]. J. Power Sources, 2006, 157: 550
[10] Jin B X, Xie H W, Mao J, et al.Electrodeposition behavior of dysprosium in EMIMBF4 ionic liquid[J]. Rare Met. Mater. Eng., 2012, 41: 881(金炳勋, 谢宏伟, 毛景等. 1-乙基-3-甲基-咪唑四氟硼酸盐离子液体中镝电沉积行为[J]. 稀有金属材料与工程, 2012, 41: 881)
[11] Zhang J, Gong X L, Yu H H, et al.The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium[J]. Corros. Sci., 2011, 53: 3324
[12] Yu L H, Xue J Q, Jiang M, et al.Influence of the ionic liquid [Emim]BF4 on electrochemical performance of lead dioxide electrode[J]. Rare Met. Mater. Eng., 2015, 44: 1932(于丽花, 薛娟琴, 蒋朦等. 离子液体对PbO2电极电化学性能的影响[J]. 稀有金属材料与工程, 2015, 44: 1932)
[13] Jin J K.Effect of additive on the process of tin electrodeposion in methanesulfonate solution[J]. Surf. Technol., 2007, 36(5): 53(靳佳琨. 添加剂对甲基磺酸盐镀锡电沉积过程的影响[J]. 表面技术, 2007, 36(5): 53)
[14] Tripathy B C, Das S C, Hefter G T, et al.Zinc electrowinning from acidic sulfate solutions: Part I: effects of sodium lauryl sulfate[J]. J. Appl. Electrochem., 1997, 27: 673
[15] Tang Y M, Kong C M.A preliminary study on electrodeposition and decolorization activity of β-PbO2-coated titanium electrodes from tetrafluoroborate solutions[J]. Mater. Chem. Phys., 2012, 135: 1108
[16] Xie T, Wang B.Two lead oxide preparation method[J]. J. Chengdu. Univ.(Nat. Sci.), 2003, 22(3) 25(谢天, 王斌. 二氧化铅电极制备方法综述[J]. 成都大学学报(自然科学版), 2003, 22(3): 25)
[17] Scharifker B, Hills G.Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28: 879
[18] Depestel L M, Strubbe K.Electrodeposition of gold from cyanide solutions on different n-GaAs crystal faces[J]. Journal of Electroanalytical Chemistry, 2004, 572(1): 195
[19] Ren X B, Lu H Y, Liu Y N, et al.3-Dimensional growth mechanism of lead dioxide electrode on the Ti substrate in the process of electrochemical deposition[J]. Acta Chim. Sin., 2009, 67: 888(任秀斌, 陆海彦, 刘亚男等. 钛基二氧化铅电极电沉积制备过程中的立体生长机理[J]. 化学学报, 2009, 67: 888)
[20] Yu J X, Chen Y Y, Huang Q A.The effects of some additives on the electrocrystallization of zinc on glassy carbon electrode[J]. J. Wuhan Univ.(Nat. Sci. Ed.), 2006, 42: 686(喻敬贤, 陈永言, 黄清安. 某些添加剂对锌在玻碳电极上电结晶的影响[J]. 武汉大学学报(自然科学版), 1996, 42: 686)
[21] Scharifker B R, Mostany J.Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site[J]. J. Electroanal. Chem. Interf. Electrochem., 1984, 177: 13
[22] Zheng L F, Zheng G Q, Cao H Z, et al.Electrochemical nucleation of nickel on vitreous carbon in leaching solution containing ammonia and chloride[J]. J. Mater. Sci. Eng., 2003, 21: 882(郑利峰, 郑国渠, 曹华珍等. 氨络合物体系中镍在玻璃碳上的电化学成核机理[J]. 材料科学与工程学报, 2003, 21: 882)
[23] Milchev A, Stoyanov S.Classical and atomistic models of electrolytic nucleation: comparison with experimental data[J]. J. Electroanal. Chem. Interf. Electrochem., 1976, 72: 33
[24] Milchev A, Heerman L.Electrochemical nucleation and growth of nano- and microparticles: some theoretical and experimental aspects[J]. Electrochim. Acta, 2003, 48: 2903
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!