Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 773-780    DOI: 10.11901/1005.3093.2016.779
ARTICLES Current Issue | Archive | Adv Search |
Electrocatalytic Hydrogen Evolution Reaction on Electrodeposited Amorphous Co-W Alloy Coatings in Alkaline Solution
Yu WANG, Minqi SHENG(), Wenping WENG, Jifang XU, Mengqiu CAO
Shagang School of Iron and Steel, Soochow University, Suzhou 215021, China
Cite this article: 

Yu WANG, Minqi SHENG, Wenping WENG, Jifang XU, Mengqiu CAO. Electrocatalytic Hydrogen Evolution Reaction on Electrodeposited Amorphous Co-W Alloy Coatings in Alkaline Solution. Chinese Journal of Materials Research, 2017, 31(10): 773-780.

Download:  HTML  PDF(1074KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Co-W alloy coatings were prepared on Cu substrates by galvanostatic electrodeposition, which are amorphous if the concentration of WO42- ≥0.075 mol/L. Electrochemical analysis showed that the amorphous Co-W alloy coatings exhibited excellent electrocatalytic activity for hydrogen evolution reaction (HER) in 1 mol/L NaOH solution. The HER occurs though a Volmer-Heyrovsky reaction pathway. The S-4 coating (W content is 40.1 mass%) showed the best HER activity and its apparent exchange current density jo equals 3.17×10-5 A/cm2. Moreover, the cathode current density of the S-4 coating exceeds that of commercial Pt when the applied potential is more negative than -1.464Vvs.SCE. In addition, EIS results suggested that the high HER activity of the amorphous Co-W alloy coatings was mainly attributed to both of the high intrinsic catalytic activity and the large specific surface area (electrochemical active area).

Key words:  metallic materials      electrodeposition      Co-W alloy coatings      amorphous alloy      electrocatalysis      hydrogen evolution reaction     
Received:  29 December 2016     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (No.51204115) and Natural Science Foundation of Jiangshu Province (Nos.BK20141193 & BK20151221)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.779     OR     https://www.cjmr.org/EN/Y2017/V31/I10/773

Fig.1  Effect of WO42-concentration on tungsten content in Co-W alloy coatings
Fig.2  (a) XRD patterns of Co-W alloy coatings; (b) comparisons of the peak positions of the coatings S-1 and S-2
Fig.3  SEM micrographs of Co-W alloy coatings (a) S-1, (b) S-2, (c) S-3, (d) S-4, (e) S-5; (f) cross section of the coating S-4
Fig.4  (a) LSV and (b) Tafel curves of Co-W alloy coatings and Pt plate in 1 mol/L NaOH solution
Sample Tafel slope/mVdec-1 j0/Acm-2
Pt 32.4 4.21×10-5
S-1 102.5 3.89×10-6
S-2 97.2 5.36×10-6
S-3 86.5 5.68×10-6
S-4 83.3 3.17×10-5
S-5 81.7 1.42×10-5
Table 1  Tafel slopes and apparent exchange current densities (j0) of all samples
Fig.5  EIS plots of (a) Co-W alloy coatings and (b) Pt at an overpotential of 0.18 V in 1 mol/L NaOH solution (symbols: experimental data; solid lines: fitted data), the insets show the corresponding equivalent electric circuit models
Sample Rs/Ωcm2 Ydl-1cm-2sf f Rct/Ωcm2 L/H RL/Ωcm2 Cdl/Fcm-2
Pt 2.53 2.487×10-5 0.9253 16.88 - - 2.58×10-5
S-1 2.85 9.49×10-4 0.8953 68.47 148.01 410.82 1.66×10-4
S-2 2.52 3.563×10-3 0.8261 61.47 124.24 329.23 2.17×10-4
S-3 2.85 4.76×10-3 0.7936 55.17 85.72 163.91 2.21×10-4
S-4 2.64 7.96×10-3 0.7865 35.68 21.37 78.61 4.81×10-4
S-5 2.51 7.29×10-3 0.7924 42.48 34.71 89.82 4.59×10-4
Table 2  Electrical equivalent circuit parameters
Samples Rf/Ωcm2 j0/Rf (Acm-2)
Pt 1.29 3.25×10-5
S-1 8.3 4.69×10-7
S-2 10.9 4.94×10-7
S-3 11.1 5.14×10-7
S-4 24.1 1.32×10-6
S-5 23.0 6.19×10-7
Table 3  Surface roughness factors (Rf) and intrinsic electrocatalytic activities (j0/Rf)
Fig.6  (a) EIS plots of S-4 at different overpotentials in 1 mol/L NaOH solution (symbos:experimental data; solid lines: fitted data); (b) the lgRct-1 vs. overpotential
Overpotential/V Rs/Ωcm2 Ydl -1cm-2sf f Rct/Ωcm2 L/H RL/Ωcm2
0.16 2.74 8.02×10-3 0.8063 70.95 77.18 154.36
0.18 2.64 7.96×10-3 0.7865 35.68 21.37 78.61
0.2 2.65 7.78×10-3 0.7913 22.72 12.46 54.38
0.22 2.68 7.83×10-3 0.7762 14.33 3.12 25.71
Table 4  Electrical equivalent circuit parameters
Fig.7  (a) Tafel plots of S-4 at different temperatures in 1 mol/L NaOH solution; (b) corresponding Arrhenius plot
Fig.8  (a) LSV plots of S-4 before and after 500 potential cycles in 1 mol/L NaOH solution; (b) j-t plot of S-4 at an over potential of 0.3 V in 1 mol/L NaOH solution
[1] Benjamin Rausch, Mark D Symes, Greig Chisholm, et al.Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326
[2] Du J J, Li N, Xu J X, et al.The progress of research on the electrode materials for hydrogen evolution in water electrolysis[J]. Journal of Functional Materials, 2015, 46(9): 09001(杜晶晶, 李娜, 许建雄等. 电解水析氢电极材料的研究新进展[J]. 功能材料, 2015, 46(9): 09001)
[3] Lu X Y, Zhao C.Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes[J]. J. Mater. Chem A, 2013, 1(39): 12053
[4] Jakub Staszak-Jirkovsky, Christos D Malliakas, Pietro P Lopes, et al.Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nat. Mater. 2016, 15(2): 197
[5] Wang L N, Li Z, Liu X, et al.Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported on γ-Al2O3[J]. Int. J. Hydrogen Energy, 2015, 40(25): 7965
[6] Rosalbino F, Maccio D, Saccone A, et al.Study of Co-W crystalline alloys as hydrogen electrodes in alkaline water electrolysis[J]. Int. J. Hydrogen Energy, 2014, 39(24): 12448
[7] Ding W P, Guo X F, Mo M, et al.Progress of the study on the synthesis and catalytic property of noncrystalline alloy nanotubes[J]. Chinese. J. Catal, 2010, 31(8): 887(丁维平, 郭学锋, 莫敏等. 非晶态合金纳米管的制备及其催化性能研究进展[J]. 催化学报, 2010, 31(8): 887)
[8] Li X, Lu F, Chen C, et al.Properties, Formation mechanism and application of amorphous alloys[J]. Nonferrous Met. Mat. Eng, 2016, 37(5): 233(李翔, 吕方, 陈晨等. 非晶合金的性能、形成机理及应用[J]. 有色金属材料与工程, 2016, 37(5): 233)
[9] Rajak Syeda, Ghosha S K, Sastryb P U, et al.Electrodeposition of thick metallic amorphous molybdenum coating from aqueous electrolyte[J]. Surf. Coat. Technol., 2015, 261: 15
[10] Ghaferi Z, Raeissi K, Golozar M A, et al.Characterization of nanocrystalline Co-W coatings on Cu substrate, electrodeposited from a citrate-ammonia bath[J]. Surf. Coat. Technol., 2011, 206: 497
[11] Weston D P, Harris S J, Shipway P H, et al.Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath[J]. Electrochim. Acta, 2010, 55(20): 5695
[12] Mrinalini Mulukutla, Vamsi Karthik Kommineni, Sandip P Harimkar.Pulsed electrodeposition of Co-W amorphous and crystalline coatings[J]. Appl. Surf. Sci., 2012, 258(7): 2886
[13] Liu Y W, Hua X M, Xiao C, et al.Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution[J]. J. Am. Chem. Soc, 2016, 138: 5090
[14] Samuel Cruz-Manzo, Rui Chen, Paul Greenwood.An impedance model for analysis of EIS of polymer electrolyte fuel cells under hydrogen peroxide formation in the cathode[J]. J. Electroanal. Chem., 2015,745: 28
[15] Jovi? B M, Jovi? V D, La?njevac U ?, et al.Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solution[J]. J. Electroanal. Chem., 2016, 766: 85
[16] Herraiz-Cardona I, González-Buch C, Valero-Vidal C, et al.Co-modification of Ni-based type Raney electrodeposits for hydro gen evolution reaction in alkaline media[J]. J. Power Sources, 2013, 240: 704
[17] Duan Q H, Wang S L, Wang L P.Electro-deposition of the porous composite Ni-P/LaNi5electrode and its electro-catalytic performance toward hydrogen evolution reaction[J]. Acta Phys-Chim. Sin., 2013, 29(1): 124(段钱花, 王森林, 王丽品. 电沉积多孔复合Ni-P/LaNi5电极及其析氢电催化性能[J]. 物理化学学报, 2013, 29(1): 124)
[18] Zhu L L, Lin H P, Li Y Y, et al.A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials[J]. Nat. Commun., 2016, 7: 12272
[19] Zhu L L, Cai Q, Liao F, et al.Ru-modified silicon nanowires as electrocatalysts for hydrogen evolution reaction[J]. Electrochem. Commun., 2015, 52: 32
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!