Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 612-618    DOI: 10.11901/1005.3093.2016.525
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Properties of Composite Films of Silk Fibroin/Carboxymethyl Chitosan
Shui XU1,2(), Yan ZHANG1,2, Baodong GAO1,2, Zhao ZHAO1,2, Guotao CHENG1,2, Yong ZHU1,2
1 College of Biotechnology, Laboratory of Fiber Materials of Southwest University,Chongqing 400715, China
2 Research Center of Silk Fiber Materials Engineering of Chongqing, Chongqing 400715, China
Cite this article: 

Shui XU, Yan ZHANG, Baodong GAO, Zhao ZHAO, Guotao CHENG, Yong ZHU. Preparation and Properties of Composite Films of Silk Fibroin/Carboxymethyl Chitosan. Chinese Journal of Materials Research, 2017, 31(8): 612-618.

Download:  HTML  PDF(4384KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite films of regenerated silk fibroin/carboxymethyl chitosan were successfully prepared by quadratic freezing-drying method with glutaraldehyde as cross-linking agents, and then of which the physicochemical performance was characterized. The results show that the composite materials show a three-dimensional porous structure with uniform pore distribution; while there exists intermolecular hydrogen bonds between the silk fibroin and the carboxymethyl chitosan, thus they are compatible with each other; Among others, the prepared composite presents the best mechanical property and good thermal stability when the mass ratio of the regenerated silk fibroin to the carboxymethyl chitosan was 1:1 and the glutaraldehyde content was 0.20%. The composite material has also good biodegradability and biocompatibility.

Key words:  composite      biomaterials      composite membrane material      lyophilization      regenerated silk fibroin      carboxymethyl chitosan      biocompatibility     
Received:  08 September 2016     
ZTFLH:  TQ341.5  
Fund: Supported by Research Center of Silk Fiber Materials Engineering of Chongqing (No.SILKGCZX009) and Jiangsu Key Laboratory of Silk Engineering, Soochow University (No.KJS1508)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.525     OR     https://www.cjmr.org/EN/Y2017/V31/I8/612

No. SF/CMCS(g/g) GA(%)
1 3:1 0.20
2 2:1 0.20
3 1:1 0.20
4 1:2 0.20
5 1:3 0.20
6 1:1 0.05
7 1:1 0.10
8 1:1 0.15
9 1:1 0
Table 1  Preparation process of regenerated fibroin/carboxymethyl chitosan composites
SF:CMCS Dissolution
rate
Swelling
capacity
Water
content rate
3:1 56.55 279.03 24.30
2:1 58.66 266.31 32.54
1:1 59.41 391.87 32.89
1:2 77.37 591.96 34.33
1:3 80.37 447.51 33.78
Table 2  Dissolution rate, swelling capacity and water content rate of different composites (%)
GA Dissolution
rate
Swelling
capacity
Water
content rate
0 70.00 42.47
0.05 64.38 914.86 37.21
0.10 64.35 699.39 33.63
0.15 57.91 643.01 31.91
0.20 59.41 391.87 32.89
Table 3  Dissolution rate, swelling capacity and water content rate of different glutaraldehyde content (%)
Fig.1  Mechanicalproperies of different composites
Fig.2  Mechanicalproperies of different composites with different glutaraldehyde content
Fig.3  Thermogravimetric curves of different SF/CMCS composites
Fig.4  Thermogravimetric curves of SF/CMCS composites with different glutaraldehyde content
Fig.5  FTIR spectra of SF, CMCS and SF/CMCS composites
Fig.6  FTIR spectra of crosslink and uncrosslink SF/CMCS composites
Fig.7  SEM images of regenerated fibroin/arboxymethyl chitosan composites A (a)、B (b)、C (c) refer SF/CMCS 2/1, 1/1, 1/2
Fig.8  The histological observation of composites implanted subcutaneous (a, b, c) the histological observation of composites 1 after operation 1, 2, 4 weeks, (d, e, f) the histological observation of composites 2 after operation 1, 2, 4 weeks
[1] Noishiki Y, Nishiyama Y, Wada M, et al.Mechanical properties of silk fibroin-microcrystalline cellulose composite films[J]. J. Appl. Polym. Sci., 2002, 86: 3425
[2] Wang Z X, Zhang Y Z.Study on structure and properties of silk fibroin-pvp blend films[J]. J. Suzhou Inst. Silk Textile Techenol., 2001, 21(5): 7(王朝霞, 张幼珠. 丝素-PVP共混膜的结构及性能研究[J]. 苏州丝绸工学院学报, 2001, 21(5): 7)
[3] Chen L Y, Du Y M, Liu Y.Structure-antimicrobial ability relationship of carboxymethyl chitosan[J]. J. Wuhan Univ.(Nat. Sci.Ed.),2000, 46: 191(陈凌云, 杜予民, 刘义. 羧甲基壳聚糖的结构与抗菌性能研究[J]. 武汉大学学报(自然科学版): 2000, 46: 191)
[4] Lin F, Li Y C, Jin J, et al.Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid[J]. Mater. Chem. Phys., 2008, 111: 92
[5] Cheng G T, Wang X, Tao S J, et al.Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes[J]. J. Appl. Polymer Sci., 2015, 132: 41959
[6] Chen Y, Zhang Y, Wang F J, et al.Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing[J]. Mater. Sci. Eng., 2016, 63C: 18
[7] Wang Y W, Zhang X, Wang Y, et al.Structure and properties of silk fibroin/carboxymethylchitosan blend membrane[J]. J. Cell. Sci. Technol., 2010, 18(2): 27(王延伟, 张弦, 王艳等. 丝素/羧甲基壳聚糖共混膜的结构与性能[J]. 纤维素科学与技术, 2010, 18(2): 27)
[8] He J X, Wang Y, Cui S Z, et al.Structure and properties of silk fibroin/carboxymethylchitosan blend films[J]. Polymer Bull., 2010, 65:395
[9] Ye Y, Zhang J Y, Huang L Q.Effect of glycerin and glutaraldehyde on the improvement of fibroin membrane[J].Sci. Sericult., 2006, 32: 231(叶勇, 张剑韵, 黄龙全. 甘油和戊二醛对丝素膜性能的改良效果[J]. 蚕业科学, 2006, 32: 231)
[10] Wu Z W, Feng X X, Zhu H L, et al.Effects of different solvent systems on molecular mass of silk fibroin and properties of the regenerated silk fibroin membranes[J]. Sci. Sericult., 2010, 36: 707(吴章伟, 冯新星, 朱海霖等. 不同溶解体系的丝素蛋白分子质量及对再生丝素膜性能的影响[J]. 蚕业科学, 2010, 36: 707)
[11] Qu J, Liu Y, Yu Y N, et al.Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin[J]. Mater. Sci. Eng. C, 2014, 44: 166
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!