Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 603-611    DOI: 10.11901/1005.3093.2016.368
Orginal Article Current Issue | Archive | Adv Search |
Preparation and High Temperature Oxidation Behavior of Ceramic Coating for Electro-thermal Alloy Foam
Xiaona HU1, Deli DUAN1(), Jun LIU2, Shu LI1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Shanghai Institute of Space Propulsion, Shanghai, 201112, China
Cite this article: 

Xiaona HU, Deli DUAN, Jun LIU, Shu LI. Preparation and High Temperature Oxidation Behavior of Ceramic Coating for Electro-thermal Alloy Foam. Chinese Journal of Materials Research, 2017, 31(8): 603-611.

Download:  HTML  PDF(7601KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ceramic coating B-1000 was applied on the foamed electro-heating alloy NiCr20 through vacuum impregnation and high-temperature fusion sintering. The isothermal oxidation behavior at 1000℃ and thermal shock behavior between 1000℃ and 20 oC of the foamed electro-heating alloy with and without ceramic coating were investigated in air. The resistance to oxygen inward migration of the coating was evaluated by tensile test at 1000 oC in air. The results showed that the thin ceramic coating was uniform, dense, and well- adhesive to the substrate, which improved the oxidation resistance and thermal shock resistance of the foamed alloy NiCr20 significantly. The apparent tensile strength of the foamed electro-heating alloy NiCr20 with the coating B-1000 kept c.a. 2 MPa after air oxidation at 1000oC for 20 h.

Key words:  metallic materials      foamed electro-thermal alloy      ceramic coating      vacuum impregnation and sintering      isothermal oxidation      thermal shock      tension property     
Received:  29 June 2016     
ZTFLH:  TG146.15  
Fund: Supported by National Defense Foundation of China (No.JPPT-125-5-031)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.368     OR     https://www.cjmr.org/EN/Y2017/V31/I8/603

SiO2 + BaO Cr2O3 Clay
66.7 28.6 4.7
Table 1  The nominal chemical compositions of the B-1000 ceramic power (mass fraction,%)
Fig.1  SEM images of the B-1000 high temperature ceramic powder after ball milling (a) 0 h, (b) 170 h
Fig.2  Macro morphologies of the NiCr20 alloy foam (a) without coating, (b)with coating
Fig.3  SEM cross-sectional microstructure of the foam NiCr20 alloy applied ceramic coating (different areas)
Point Ni Cr Si O Ca Ba
A 13.82 21.82 32.73 0.47 31.15
B 79.10 20.90
C 1.62 22.00 15.07 28.04 0.60 32.68
Table 2  EDS results of points A, B, C in Fig.3 (mass fraction, %)
Fig.4  Oxidation kinetics of NiCr20 alloy without and with enamel coatings at 1000℃ in air
Thermal shock times Ceramic coating
10 Unchanged, deep green
15 Unchanged, medium green
20 Unchanged,light green
Table 4  The results of thermal shock experiment
Fig.5  SEM cross-sectional microstructure of the foam NiCr20 alloy with enamel coating after isothermal oxidation for 1, 2, 5, 10 and 20 h in static air at 1000℃ (a) 1 h, (b) 2 h, (c) 5 h, (d) 10 h and (e) 20 h
Area Ti Cr Si O Ca Ba Al Ti Ce
A 84.31 14.22 1.47
B 28.62 13.08 25.53 2.59 25.48 1.52
C 21.77 15.93 23.58 2.80 34.24 1.68
D 88.09 11.91
E 1.19 24.96 15.11 33.89 1.99 21.50 1.37
F 8.93 33.66 14.34 35.29 0.69 3.39 3.70
G 90.13 9.87
H 13.60 14.29 37.42 1.02 32.92 0.75
I 23.29 10.94 30.95 2.08 31.67 1.07
J 92.72 7.28
K 28.05 18.52 31.20 1.29 19.98 0.96
L 3.31 24.24 20.50 28.20 23.76
M 89.92 10.03 0.06
N 4.79 35.67 10.11 17.38 2.33 29.72
O 4.41 41.18 13.92 21.64 18.85
Table 3  EDS results of areas A-O in Fig.5 (mass fraction, %)
Fig.6  XRD analysis of the foamed NiCr20 alloy applied ceramic coating
Fig.7  SEM cross-sectional microstructure of the foam NiCr20 alloy after isothermal oxidation for (a) 2, (b) 5 and (c) 10 h in static air at 1000℃
Fig.8  XRD analysis of the foam NiCr20 alloy after isothermal oxidation for 1 h and 20 h in static air at 1000℃ (a) 1 h; (b) 20 h
Fig.9  SEM cross-sectional microstructure of foam NiCr20 alloy with ceramic coatings after hot-shock test at 1000℃ for 20 times, and EDS elements profile
Fig.10  Scatter plots of tensile strength at room temperature of foamed NiCr20 electro-thermal alloy before and after oxidation at 1000℃
Fig.11  Macro view of foamed NiCr20 alloy after tensile tests (a) foamed NiCr20 alloy without ceramic coating; (b) morphologies foamed NiCr20 alloy with ceramic coating
[1] Liu P S, Li T F, Fu C, et al.Applications of porous metal materials[J]. J. Funct. Mater., 2001, 32: 12(刘培生, 李铁藩, 傅超等. 多孔金属材料的应用[J]. 功能材料, 2001, 32: 12)
[2] Chen X, Li Y X.Porous metals: Research advances and applications[J]. Mater Rev., 2003, 17(5): 5(陈祥, 李言祥. 金属泡沫材料研究进展[J]. 材料导报, 2003, 17(5): 5)
[3] Ma L Q, He D P.Fabrication and pore structure control of new type aluminium foams[J]. Chin. J. Mater. Res., 1994, 8: 11(马立群, 何德坪. 新型泡沫铝的制备及其孔结构的控制[J]. 材料研究学报, 1994, 8: 11)
[4] Tang H P, Zhang Z D.Developmental states of porous metal materials[J]. Rare Metal Mater. Eng., 1997, 26(1): 1(汤慧萍, 张正德. 金属多孔材料发展现状[J]. 稀有金属材料与工程, 1997, 26(1): 1)
[5] Liu P S, Qing H B.A spherical-pore foamed titanium alloy with high porosity[J]. Chin. J. Mater. Res., 2015, 29: 346(刘培生, 顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金[J]. 材料研究学报, 2015, 29: 346)
[6] Ma J.Towards green propulsion for spacecraft with AND-based monopropellant[J]. J. Rock. Propuls., 2003, 29(2): 48(马键. 空间飞行器采用的AND基单组元推进剂绿色推进装置[J]. 火箭推进, 2003, 29(2): 48)
[7] Duan D L, Li S.Recent advance in study on electrodeposition of nickel chromium alloys[J]. Mater. Protect., 2006, 39(2): 32(段德莉, 李曙. 电镀镍铬合金的研究进展[J]. 材料保护, 2006, 39(2): 32)
[8] Zhang Y L, Duan D L, Zhao Y H, et al.Synthesis and electrical properties of NiCrAl electro-thermal alloy foams[J]. Acta Metall. Sin., 2013, 49: 214(张月来, 段德莉, 赵宇航等. 泡沫NiCrAl电热合金的制备及其电学性能[J]. 金属学报, 2013, 49: 214)
[9] Zhou K, Ke P L, Wang A Y, et al.Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique[J]. Chin. J. Mater. Res., 2014, 28: 161(周凯, 柯培玲, 汪爱英等. PECVD制备掺氮类金刚石薄膜的电化学特性[J]. 材料研究学报, 2014, 28: 161)
[10] Shang W, Chen B Z, Shi X C, et al.Micro-arc oxidation and sol-gel composite coatings on magnesium alloy[J]. Chin. J. Mater. Res., 2011, 25: 57(尚伟, 陈白珍, 石西昌等. 镁合金微弧氧化—溶胶凝胶复合膜层的耐蚀性[J]. 材料研究学报, 2011, 25: 57)
[11] Ren X L.Study of high temperature oxidation resistance glass coating for nickel chrome [D]. Wuhan: Wuhan University of Technology, 2012(任小玲. 镍铬合金用玻璃基抗高温氧化涂层的研究 [D]. 武汉: 武汉理工大学, 2012)
[12] Marker R.Emaillier-Technik [M]. Beijing: China Light Industry Press, 1959(麦克尔. 搪瓷工艺[M]. 北京: 轻工业出版社, 1959)
[13] Tao J, Huang Z D, Liu H B, et al.Preparation and characterization of anti-oxidation enamel coating for ti-based alloys at high temperature[J]. J. Nanjing Univ. Aeronaut. Astronaut., 2010, 42: 505(陶杰, 黄镇东, 刘红兵等. 钛基合金抗高温氧化搪瓷涂层制备及性能表征[J]. 南京航空航天大学学报, 2010, 42: 505)
[14] Mi F Y, Zhu S L.Long-term high temperature oxidation and hot corrosion behavior of an enamel coating on γ-TiAl Intermetallics at 700℃[J]. Corros. Sci. Protect. Technol., 2015, 27: 254(米丰毅, 朱圣龙. 搪瓷涂层700℃长期抗高温氧化和热腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27: 254)
[15] Liu W, Li W Z, Yang J B, et al.Current research status of enamel coatings on titanium alloys[J]. Mater. Rev., 2013, 27(3): 45(刘伟, 李伟洲, 杨剑冰等. 钛合金搪瓷涂层研究现状[J]. 材料导报, 2013, 27(3): 45)
[16] Wang X Y, Xin L, Wei H, et al.Progress of high-temperature protective coatings[J]. Corros. Sci. Protect. Technol., 2013, 25: 175(王心悦, 辛丽, 韦华等. 高温防护涂层研究进展[J]. 腐蚀科学与防护技术, 2013, 25: 175)
[17] Chen Q F, Fan S K, Gong J B, et al.High temperature cyclic oxidation behaviour of ceramic thermal barrier coating[J]. Chin. J. Mater. Res., 1992, 6: 414(陈全芳, 范世凯, 宫俊波等. 陶瓷热障涂层的高温循环氧化行为[J]. 材料研究学报, 1992, 6: 414)
[18] Xiong Y M, Zhu S L, Wang F H.Effect of ultrafine enamel coating on the oxidation and mechanical property of Ti60 Alloy[J]. Acta Metall. Sin., 2004, 40: 768(熊玉明, 朱圣龙, 王福会. 超细搪瓷涂层对Ti60合金氧化及力学性能的影响[J]. 金属学报, 2004, 40: 768)
[19] Xi X M, Hu C B.The relations between melting point of material and its particle radius[J]. Min. Metall. Eng., 2007, 27(4): 46(习小明, 胡常波. 材料的熔点与其颗粒半径之间的关系[J]. 矿冶工程, 2007, 27(4): 46
[20] Li M S.High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 49-72(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 49-72)
[21] Zheng D Y.Corrosion mechanisms of enamel and TiAlN coatings at high temperatures [D]. Beijing: Institute of Metal Research, Chinese Academy of Sciences, 2007(郑德有. 搪瓷涂层和氮化钛铝涂层高温腐蚀机理的研究 [D]. 北京: 中国科学院金属研究所, 2007)
[22] Majumdar A, Jana S.Glass and glass-ceramic coatings, versatile materials for industrial and engineering applications[J]. Bull. Mater. Sci., 2001, 24: 69
[23] Mehrer H, Imre A W, Tanguep-Nijokep E.Diffusion and ionic conduction in oxide glasses[J]. J. Phys. Conf. Ser., 2007, 106: 012001
[24] Lou H Y, Chen G F.High temperature oxidation behavior of nanocrystalline Ni-Cr-Al superalloys[J]. Corros. Sci. Protect. Technol., 2003, 15: 147(楼翰一, 陈国锋. Ni-Cr-Al纳米晶合金在1000oC的高温氧化行为[J]. 腐蚀科学与防护技术, 2003, 15: 147)
[25] Huang J P, Yang B, Wang H.Oxidation behavior of the Ni-Cr-Al alloy at high temperatures[J]. Nonferr. Metals Sci. Eng., 2015, 6(4): 41(黄嘉鹏, 杨斌, 汪航. 镍铬铝合金的高温氧化行为[J]. 有色金属科学与工程, 2015, 6(4): 41)
[26] Wang Z S, Zhou L Z, Guo J T, et al.High temperature oxidation behavior of directional solidification NiAl-28Cr-5.94Mo-0.05Hf-0.01Ho eutectic alloy[J]. Chin. J. Mater. Res., 2010, 24: 585(王振生, 周兰章, 郭建亭等. NiAl-28Cr-5.94Mo-0.05Hf-0.01Ho定向共晶合金的高温氧化行为[J]. 材料研究学报, 2010, 24: 585)
[27] Liu P S.Some problems on mechanical properties of foamed metals[J]. Rare Met. Mater. Eng., 2004, 33: 473(刘培生. 泡沫金属力学性能的若干问题[J]. 稀有金属材料与工程, 2004, 33: 473)
[28] Zang C Y, Tang H P, Wang J Y, et al.Research progress of mechanical properties of nickel alloy porous materials[J]. Hot Work. Technol., 2009, 38(10): 29(臧纯勇, 汤慧萍, 王建永等. 镍合金多孔材料力学性能的研究进展[J]. 热加工工艺, 2009, 38(10): 29)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!