Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 619-626    DOI: 10.11901/1005.3093.2016.655
Orginal Article Current Issue | Archive | Adv Search |
Controllable Synthesis and Photocatalytic Activity of ZnO Nano-cones with Different Aspect Ratio
Yan CHEN(), Ping ZHANG, Yonghui SHANG, Xiaoling WANG
Chemistry and Chemical Engineering School, Xianyang Normal University, Xianyang 712000, China
Cite this article: 

Yan CHEN, Ping ZHANG, Yonghui SHANG, Xiaoling WANG. Controllable Synthesis and Photocatalytic Activity of ZnO Nano-cones with Different Aspect Ratio. Chinese Journal of Materials Research, 2017, 31(8): 619-626.

Download:  HTML  PDF(2981KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZnO nano-cones with various aspect ratios were synthesized via a solvothermal reaction of zinc acetate with n-butylamine and tetrahydrofuran or ethanol by varying dosage of n-butylamine and temperature. The possible growth mechanism was proposed. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Photocatalytic activity of ZnO nano-cones in degradation of methyl orange (MO) was investigated, and the results show that ZnO nano-cones show superior photoreactivity, compared to ZnO powders as a benchmarking. The superior intrinsic photocatalytic activity can be attributed to the high percentage of exposed {001} facets of ZnO nano-cones with small aspect ratio.

Key words:  nano-materials      ZnO nano-cones      controlled synthesis      formation mechanism      photocatalytic activity      reactive facets     
Received:  08 November 2016     
ZTFLH:  O649  
Fund: Supported by National Natural Science Foundation of China (Nos.21305117 & 21475113), Natural Science Foundation of Shaanxi Province (Nos.2012JQ2014 & 2017JQ2043), and Scientific & Technological Achievements Transformation of Chemistry and Chemical Engineering School of Xianyang Normal University (No.XSYHGKZ1701)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.655     OR     https://www.cjmr.org/EN/Y2017/V31/I8/619

Sample 1 Sample 2 Sample 3
Volume ratio of solution VBA:VTHF = 4.5:6 VBA:VTHF = 0.5:10 VBA:VEtOH = 0.5:10
Temperation /℃ 180 140 140
Length of the diagonal/nm 540-720 220-290 500-520
Length/nm 570-630 350-580 3210-1850
Aspect ratio 1.05-0.86 1.59-2.00 6.40-3.52
TC002 0.53 0.48 0.43
K/h-1 0.532±0.039 0.425±0.028 0.316±0.031
BET/m2g-1 1.67 2.15 1.74
k'/h-1m-2 31.7 19.5 18.4
Table 1  Reaction condition, TC002, BET, K and k' of ZnO nanocones with various aspect ratio
Fig.1  SEM images of sample 1 (a), sample 2 (b) and sample 3 (c)
Fig.2  XRD patterns of (I) sample 1, (II) sample 2 and (III) sample 3, respectively. The stick pattern is the standard XRD pattern for ZnO powders (JPCDS card file No.36-1451)
Fig.3  TEM (a), SAED (b) and HRTEM images (c) of sample 2
Fig.4  SEM images of the products prepared at VBA/VTHF of 0.5:10 at 140℃ (a) 1 h, (b) 5 h and (c) 7 h, respectively
Fig.5  XRD patterns of the products prepared at VBA/VTHF of 0.5:10 at 140℃ (a) 1 h, (b) 5 h and (c) 7 h, the stick pattern is the standard XRD pattern for ZnO powders (JPCDS card file No.36-1451)
Fig.6  Schematic illustration of the formation process of ZnO nanocones
Fig.7  UV-visible diffuse reflectance spectra (a) and the band gap (b) of sample 1, 2, 3 and 4
Fig.8  Adsorption kinetics of MO on samples 1, 2, 3 and 4 (a), Photodegradation of MO solutions without catalyst (I), over samples 3 (II), 2 (III), 1 (IV) and 4 (V) (b), The fittings of ln (C0/C) plot vs. time over samples 1, 2, 3 and 4 (c) and Normalized apparent rate constant of the degradation per unit surface area (k') over samples 1, 2, 3 and 4 (d)
Fig.9  Cyclic photodegradation of MO solution with sample 1, 2 and 3 under Hg lamp irradiation
[1] Tong H, Ouyang S X, Bi Y P, et al.Nano-photocatalytic materials: possibilities and challenges[J]. Adv Mater, 2012, 24: 229
[2] Jiang Z Y, Kuang Q, Xie Z X, et al.Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces[J]. Adv Funct Mater, 2010, 20: 3634
[3] Zhou K B, Li Y D.Catalysis based on nanocrystals with well-defined facets[J]. Angew Chem Int Ed, 2012, 51: 602
[4] Wang Z L.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. J Phys Condens Matter, 2004, 16: R829
[5] Pan Z W, Dai Z R, Wang Z L.Nanobelts of semiconducting oxides[J]. Science, 2001, 291(9): 1947
[6] Fan Z Y, Lu J G.Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes[J]. Appl Phys Lett, 2005, 86: 032111
[7] Kind H, Yan H Q, Messer B, et al.Nanowire ultraviolet photodetectors and optical switches[J]. Adv Mater, 2002, 14(2): 158
[8] Wang C H, Chu X F, Wu M M.Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods[J]. Sens Actu B, 2006, 113: 320
[9] Law M, Greener L E, Johnson J C, et al.Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4: 455
[10] Wang Z L, Song J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(14): 242
[11] Ma C Y, Zhou Z H, Wei H, et al.Rapid large-scale preparation of ZnO nanowires for photocatalytic application[J]. Nanoscale Res Let, 2011, 6: 536
[12] Zheng Y H, Chen C Q, Zhan Y Y, et al.Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property[J]. Inorg. Chem, 2007, 46(16): 6675
[13] Zhang L N, Yang H Q, Ma J H, et al.Controllable synthesis and shape-dependent photocatalytic activity of ZnO nanorods with a cone and different aspect ratios and of short-and-fat ZnO microrods by varying the reaction temperature and time[J]. Appl Phys A, 2010, 100: 1061
[14] Guo M Y, Ching Ng A M, Liu F Z, et al. Effect of native defects on photocatalytic properties of ZnO[J]. J Phys Chem C, 2011, 115: 11095
[15] Bae J, Han J B, Zhang X M, et al.ZnO nanotubes grown at low temperature using Ga as catalysts and their enhanced photocatalytic activities[J]. J Phys Chem C, 2009, 113: 10379
[16] Ye C H, Bando Y, Shen G Z, et al.Thickness-dependent photocatalytic performance of ZnO nanoplatelets[J]. J Phys Chem B, 2006, 110: 15146
[17] Dong J Y, Lin C H, Hsu Y J, et al.Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies[J]. Cryst Eng Comm, 2012, 14: 4732
[18] Wang M, Fei G T, Zhang L D.Porous-ZnO-nanobelt film as recyclable photocatalysts with enhanced photocatalytic activity[J]. Nanoscale Res Lett, 2010, 5: 1800
[19] Wang Y X, Li X Y, Lu G, et al.Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities[J]. J Phys Chem C, 2008, 112: 7332
[20] Chantarat N, Chen Y W, Lin C C, et al.Selective oxygen-plasma-etching technique for the formation of ZnO-FTO heterostructure nanotubes and their rectified photocatalytic properties[J]. Inorg Chem, 2010, 49: 11077
[21] Sun T J, Qiu J S, Liang C H.Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J]. J Phys Chem C, 2008, 112: 715
[22] Wang X J, Zhang Q L, Wan Q, et al.Controllable ZnO architectures by ethanolamine- assisted hydrothermal reaction for enhanced photocatalytic activity[J]. J Phys Chem C, 2011, 115: 2769
[23] Lu F, Cai W P, Zhang Y G.ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance[J]. Adv Funct Mater, 2008, 18: 1047
[24] Lei A H, Qu B H, Zhou W C, et al.Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres[J]. Mater Lett, 2012, 66: 72
[25] Li B X, Wang Y F.Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures[J]. J Phys Chem C, 2010, 114: 890
[26] Ying Y L, Song T, Huang H W, et al.Nanoporous ZnO nanostructures for photocatalytic degradation of organic pollutants[J]. Appl Phys A, 2013, 110: 351
[27] Zhang G K, Shen X, Yang Y Q.Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity[J]. J Phys Chem C, 2011, 15: 7145
[28] Kim T Y, Kim J Y, Lee S H, et al.Characterization of ZnO needle-shaped nanostructures grown on NiO catalyst-coated Si substrates[J]. Synthetic Met, 2004, 144: 61
[29] Wang R C, Liu C P, Huang J L, et al.ZnO nanopencils: efficient field emitters[J]. Appl Phys Lett, 2005, 87: 013110
[30] Xu F, Du G H, Halasa M, et al.Formation mechanism, structural characterization, optical properties and photocatalytic activity of hierarchically arranged sisal-like ZnO architectures[J]. Chem Phys Lett, 2006, 426: 129
[31] Ma J H, Yang H Q, Song Y Z, et al.Controlled growth and photoluminescence of highly oriented arrays of ZnO nanocones with different diameters[J]. Sci China Ser E-Tech Sci, 2009, 52(5): 1264(马军虎, 杨合情, 宋玉哲等. 不同直径ZnO纳米锥阵列的可控合成及其发光特性[J]. 中国科学, 2009, 39(3): 445)
[32] Laudise R A, Ballman A A.Hydrothermal synthesis of zinc oxide and zinc sulfide[J]. J Phys Chem, 1960, 64: 688
[33] Chen Y, Zhao H, Liu B, et al.Charge separation between wurtzite ZnO polar {001} surfaces and their enhanced photocatalytic activity[J]. Applied Catalysis B, 2015, 163: 189
[34] Yang J H, Wang D G, Han H X, et al.Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc Chem Res, 2013, 46: 1900
[35] Chen Y, Zhang P, Wang X L.Synthesis and photocatalytic activity of porous ZnS /ZnO microspheres assembled from nanosheets[J]. Mater Rev: Res, 2016, 30(8): 50(陈燕, 张萍, 王晓玲. ZnS/ZnO纳米片组装的多孔微球的制备及光催化性能研究[J].材料导报:研究篇,2016, 30(8): 50)
[36] Chen Y, Zhang L N, Zhao H, et al.Superior photocatalytic activity of porous wurtzite ZnO nanosheets with exposed {001} facets and a charge separation model between polar (001) and (001) surfaces[J]. Chem Eng J, 2015, 264: 557
[1] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[2] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[3] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[4] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[6] ZHU Xiaodong, WANG Juan, MA Yang, LUO Jianjun, YU Lin, FENG Wei. Influence of Heat Treatment on Photocatalytic Activity of Ag-ZnO Heterostructure[J]. 材料研究学报, 2020, 34(10): 770-776.
[7] Zhicheng WANG,Hao WANG,Hailiang HUANG,Benfu Hu. Effect of Ta on High Temperature Tensile Properties of Advanced Ni-based Powder Metallurgy Superalloys[J]. 材料研究学报, 2019, 33(5): 331-337.
[8] Yutong YANG,Rui LUO,Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy[J]. 材料研究学报, 2019, 33(3): 232-240.
[9] Guirong YANG,Dawen GAO,Wenming SONG,Yufu ZHANG,Ying MA. Formation Mechanism of Ni/WC Composite Coatings on Carbon Steel[J]. 材料研究学报, 2019, 33(2): 87-94.
[10] Zhumei WANG, Xiaoling ZHU, Yueming LI, Runhua LIAO, Zongyang SHEN, Jianlin ZUO. Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes[J]. 材料研究学报, 2018, 32(9): 655-661.
[11] Jian WANG, Wenjing YANG, Zhuoliang LI, Hua DING, Ning ZHANG, Hongliang HOU. Superplastic Behavior and Deformation Mechanism of 7B04 Al-alloy[J]. 材料研究学报, 2018, 32(9): 675-684.
[12] Zhiyuan MEI, Xiaosong ZHOU, Fan WU. Deformation Mechanism and Energy Dissipation of Solid Buoyant Material with Different Ratio of Height to Diameter under Uniaxial Compression Loading[J]. 材料研究学报, 2018, 32(8): 591-598.
[13] Xiangming FANG, Zhi ZENG, Shiyong GAO, Wenqiang LI, Jinzhong WANG. Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO[J]. 材料研究学报, 2018, 32(12): 945-950.
[14] Caihong YING, Lijia CHEN, Tianlong LIU, Lianquan GUO. Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels[J]. 材料研究学报, 2017, 31(7): 481-488.
[15] Yuanzhao LV, Jinglong LI, Peng LI, Tao SUN, Jiangtao XIONG, Fusheng ZHANG. Joint Formation Mechanism of Rotary Friction Welding Characterized by Seaming Ratio[J]. 材料研究学报, 2017, 31(4): 261-266.
No Suggested Reading articles found!