Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 672-678    DOI: 10.11901/1005.3093.2016.416
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel
Xiangxiang HAN, Sirong YU(), Hao LI, Jinhui HU
College of Mechanical and Electronic Engineering,China University of Petroleum,Qingdao 266580,China
Cite this article: 

Xiangxiang HAN, Sirong YU, Hao LI, Jinhui HU. Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel. Chinese Journal of Materials Research, 2017, 31(9): 672-678.

Download:  HTML  PDF(1106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superhydrophobic coating of CuO was prepared on X90 pipeline steel substrate by a three step process, i.e. first a Cu protective layer was electrodeposited on the substrate, which then was treated by hydrothermal reaction and finally modified with perfluorooctanoic solution. The phase constitution, microstructure, chemical composition, and wettability of the coating were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. Its mechanical stability, anti-adhesion behavior and corrosion resistance were also examined. The results show that the perfluorooctanoic was successfully grafted on the surface of coating consisted of petal-like CuO with micro-nano hybrid structure. The contact angle of water to the coating surface was 161.24°, and the sliding angle was about 3°. Meanwhile, the as-prepared coating surface exhibits excellent mechanical stability, anti-adhesion behavior and corrosion resistance.

Key words:  metallic materials      superhydrophobic      mechanical stability      anti-adhesion      corrosion resistance     
Received:  19 July 2016     
ZTFLH:  TB34  
Fund: Supported by National Natural Science Foundation of China (No.51075184)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.416     OR     https://www.cjmr.org/EN/Y2017/V31/I9/672

Fig.1  Surface topography and wettability of coating surface after different procedures (a) electrodeposition, (b) hydrothermal reaction, (c) PFOA modification
Fig.2  XRD patterns of coating surface before (a) and after (b) hydrothermal reaction
Fig.3  FT-IR patterns of PFOA (a) and coating surface after modification (b)
Fig.4  Schematic illustration of the abrasion test (a) and the CA and SA of the CuO superhydrophobic coating surface changed with the abrasion length (b)
Fig.5  Surface topography of CuO superhydrophobic surface after abrasion for1000 mm (a) 5000x, (b) 20000x
Fig.6  Contact, squeezing, and departure processes of 3 μL water droplet with the CuO superhydrophobic coating surface; The arrows show the moving direction of droplet
Fig.7  Evolution process of the self-cleaning behavior of the CuO superhydrophobic coating surface (a) hover, (b) sliding, (c) cleaning
Fig.8  Water droplet adsorbed and took away the pollutant particles on the CuO superhydrophobic coating surface (a) contact, (b) moving, (c) hover; The arrows show the moving direction of droplet
Fig.9  Potentiodynamic polarization curves of X90 pipeline steel, Cu coating, CuO coating and CuO superhydrophobic coating
Sample Ecorr /V Icorr / Acm-2
X90 pipeline steel -0.6635 1.626×10-4
Cu coating -0.3101 2.099×10-5
CuO coating -0.3263 1.707×10-5
CuO superhydrophobic
coating
-0.0374 5.405×10-6
Table 1  Relevant electrochemical parameters of potentiodynamic polarization curves of surface after different procedures
[1] Sarkar D K, Farzaneh M, Paynter R W.Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings[J]. Appl. Surf. Sci., 2010, 256(11): 3698
[2] Zhang Y, Pi P H, Wen X F, et al.Construction and application of wettability gradient surfaces[J]. Prog. Chem., 2011, 23(12): 2457(张勇, 皮丕辉, 文秀芳等. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23(12): 2457)
[3] Chaudhary A, Barshilia H C.Nanometric multiscale rough CuO/Cu(OH)2 superhydrophobic surfaces prepared by a facile one-step solution-immersion process: transition to superhydrophilicity with oxygen plasma treatment[J]. J. Phys. Chem. C, 2011, 115(37), 18213
[4] Liu W Y, Luo Y T, Sun L Y, et al.Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating[J]. Appl. Surf. Sci., 2013, 264(1): 872
[5] Sun X D, Liu G, Li L Y, et al.Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chin. J. Mater. Res., 2015, 29(7): 523(孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(7): 523)
[6] Li L Y, Li Y X, Zeng Z X, et al.Preparation of super-hydrophobic Zn-Al alloy coating and self-assembled siloxane by arc spraying[J]. China Surface Engineering, 2014, 27(6): 50(李龙阳, 李玉新, 曾志翔等. 电弧喷涂Zn-Al合金与硅氧烷自组装制备超疏水涂层[J]. 中国表面工程, 2014, 27(6): 50)
[7] Wang T C, Chang L J, Zhuang L M, et al.A hierarchical and superhydrophobic ZnO/C surface derived from a rice-leaf template[J]. Monatsh. Chem., 2013, 145(1): 65
[8] Ganesh V A, Dinachali S S, Nair A S, et al.Robust superamphiphobic film from electrospun TiO2 nanostructures[J]. ACS Appl. Mat. Interfaces, 2013, 5(5): 1527
[9] Li Y, Zhu X T, Zhou X Y, et al.A facile way to fabricate a superamphiphobic surface[J]. Appl. Phys. A, 2014, 115(3): 765
[10] Parale V G, Mahadik D B, Kavale M S, et al.Sol-gel preparation of PTMS modified hydrophobic and transparent silica coatings[J]. J. Porous Mater., 2013, 20(4): 733
[11] Nayak B K, Caffrey P O, Speck C R, et al.Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Appl. Surf. Sci., 2013, 266(2): 27
[12] Li W, Kang Z X.Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surf. Coat. Technol., 2014, 253(25): 205
[13] Wang H Y, Meng Y, Zhao J Y, et al.New progress on preparation and properties of amphiphobic surface[J]. J. Mater. Eng., 2014, (3): 90(汪怀远, 孟旸, 赵景岩等. 双疏表面的制备及性能研究新进展[J]. 材料工程, 2014, (3): 90)
[14] Li P P, Chen X H, Yang G B, et al.Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil[J]. Appl. Surf. Sci., 2014, 300(5): 184
[15] Shi L Q, Niu H, Yang J, et al.Research on structure-properties of large diameter X90 pipeline steel produced by JCOE technological parameters[J]. Hot Working Technology, 2015, 44(3): 226(史立强, 牛辉, 杨军等. 大口径JCOE工艺生产X90管线钢组织与性能的研究[J]. 热加工工艺, 2015, 44(3): 226)
[16] Yuan Z Q, Bin J P, Wang X, et al.Fabrication of superhydrophobic surface with hierarchical multi-scale structure on copper foil[J]. Surf. Coat. Technol., 2014, 254(10): 151
[17] Fan Y H, Li C Z, Chen Z J, et al.Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties[J]. Appl. Surf. Sci., 2012, 258(17): 6531
[18] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium[J]. Corros. Sci., 2014, 83(3): 317
[19] She Z X, Li Q, Wang Z W, et al.Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J]. Chem. Eng. J., 2013, 228(28): 415
[20] Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem. C, 2011, 115(11): 4726
[21] Mihaly J, Sterkel S, Ortner H M, et al.FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels[J]. Croat. Chem. Acta, 2006, 79(3): 497
[22] Milionis A, Martiradonna L, Anyfantis G C, et al.Control of the water adhesion on hydrophobic micropillars by spray coating technique[J]. Colloid. Polym. Sci., 2013, 291(2): 401
[23] Su F H, Yao K.Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method[J]. ACS Appl. Mat. Interfaces, 2014, 6(11): 8762
[24] Sun Q H, Liu H T, Chen T C, et al.Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath[J]. Appl. Surf. Sci., 2016, 369: 277
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!