Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 241-247    DOI: 10.11901/1005.3093.2016.752
ARTICLES Current Issue | Archive | Adv Search |
Microwave Absorption Properties of Submicro-composites of Core-shell C/Co
Xiaolei WANG(), Xiukun BAO, Yinyan GUAN, Ge XU
School of Science, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Xiaolei WANG, Xiukun BAO, Yinyan GUAN, Ge XU. Microwave Absorption Properties of Submicro-composites of Core-shell C/Co. Chinese Journal of Materials Research, 2017, 31(4): 241-247.

Download:  HTML  PDF(1666KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Submicro-composites of core-shell C/Co were synthesized by a two step process of liquid synthesis and heat treatment with C as core- and Co as shell-material, and then their microwave absorption properties were investigated. Results show that the heat treatment process can enhance the crystallinity of the prepared C/Co-composites and alter their morphology, i.e. transforming from a core/shell structure with snowflak like shell to a core/shell structure with enclosed shell. Meanwhile,their saturation magnetization of increases while coercivity decreases. Finally a mixture of the prepared C/Co-composite with paraffin (50%, mass fraction) show excellent microwave absorption property i.e. a layer of such mixture of 2.5 mm in thickness exhibits a minimum reflection loss (RL) of -23 dB at 11 GHz ,and an effective bandwidth (RL<-10 dB) of 3 GHz. With the increase of layer thickness, the absorption peak shifts gradually to low frequencies and multiple-absorption peaks emerge. The excellent microwave absorption properties may be attributed to the better impedance matching, dielectric loss and quarter-wavelength interference cancellation etc..

Key words:  composite      microwave absorption properties      heat treatment      C/Co core-shell submicro-composites     
Received:  06 July 2016     
ZTFLH:  TB34  
Fund: Supported by National Natural Science Foundation of China (No。51601120), Science Research Foundation of Shenyang Department of Science and Technology (No。F15-163-4-00), Science Research Foundation of Education Department of Liaoning Province (No。L2015396)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.752     OR     https://www.cjmr.org/EN/Y2017/V31/I4/241

Fig.1  XRD pattern of C/Co submicro-composites before (a) and after (b) annealing process
Fig.2  Raman spectra of C/Co submicro-composites with and without annealing process
Fig.3  SEM images of carbon spheres(a), C/Co-sheet core-shell structure (b) and C/Co-inclosed core-shell structure (c); Inset images in right-up region of (a), (b), and (c): TEM images of the corresponding samples; Inset image in light-low region of (c): HRTEM pattern of Co shell
Fig.4  Room temperature M-H loop of C/Co submicro-composites with and without annealing process
Fig.5  Frequency dependence of the complex permittivity and the complex permeability of C/Co submicro-composites with and without annealing process (50wt.%)-paraffin composites: (a) real part and (b) imaginary part of the complex permittivity, (c) real part and (d) imaginary part of the complex permeability
Fig.6  Frequency dependence of values of μ(μ')-2f-1 of C/Co submicro-composites with and without annealing process (50%)-paraffin composites
Fig.7  Frequency dependence of |tanδε-tanδμ| (a) and attenuation constant (b) of C/Co submicro-composites with and without annealing process (50%)-paraffin composites
  Fig.8 microwave absorption properties of C/Co submicro-composites (50%)-paraffin composites (a) without annealing; (b) annealed at 800℃; (c) Simulations of dependence of λ/4 and 3λ/4 on frequency for C/Co submicro-composites with annealing process (50%)-paraffin composites from corresponding complex permittivity and permeability with frequency
[1] Wang H, Dai Y, Gong W, et al.Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances[J]. Appl. Phys. Lett., 2013, 102(22): 223113
[2] Wen S L, Liu Y, Zhao X C, et al.Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18333
[3] Wen S L, Liu Y, Zhao X C, et al.Optimal microwave absorption of hierarchical cobalt dendrites enhanced by multiple dielectric and magnetic resonance[J]. Appl. Phys. Lett., 2014, 116(5): 054310
[4] Shi G, Zhang B, Wang X, et al.Enhanced microwave absorption properties of core double-shell type Fe@C@BaTiO3 nanocapsules[J]. J. Alloys Comp., 2016, 655: 130
[5] Liu Q, Zi Z, Zhang M, et al.Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method[J]. J. Alloys Comp., 2013, 561(6): 65
[6] Qiang R, Du Y, Wang Y, et al.Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 599
[7] Han M, Yin X, Ren S, et al.Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption[J]. RSC Adv., 2016, 6(8): 6467
[8] Zhou L, Zhou W, Chen M, et al.Dielectric and microwave absorbing properties of low power plasma sprayed Al2O3/Nb composite coatings[J]. Mater. Sci. Eng., B 2011, 176(18): 1456
[9] Zhao B, Shao G, Fan B, et al.Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties[J]. J. Mater. Chem., A 2015, 3(19): 10345
[10] Yang Y, Xu C, Xia Y, et al.Synthesis and microwave absorption properties of FeCo nanoplates[J]. J. Alloys Comp., 2010, 493(1): 549
[11] Wang X, Shi G, Shi F N, et al.Synthesis of hierarchical cobalt dendrites based on nanoflakes self-assembly and their microwave absorption properties[J]. RSC Adv., 2016, 6(47): 40844
[12] Yan A, Liu Y, Li X, et al.A NaAc-assisted large-scale coprecipitation synthesis and microwave absorption efficiency of Fe3O4 nanowires[J]. Mater. Lett., 2012, 68(3): 402
[13] Liu Q, Cao Q, Bi H, et al.CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wide band Microwave Absorption[J]. Adv. Mater., 2016, 28(3): 486
[14] Liu T, Xie X, Pang Y, et al.Co/C nanoparticles with low graphitization degree: a high performance microwave absorbing material[J]. J. Mater. Chem., C 2016, 4(8): 1727
[15] Jiang J, Li D, Geng D, et al.Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites[J]. Nanoscale, 2014, 6(8): 3967
[16] Wang L, Huang Y, Sun X, et al.Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures[J]. Nanoscale, 2014, 6(6): 3157
[17] Ren Y L, Wu H Y, Lu M M, et al.Quaternary Nanocomposites Consisting of Graphene, Fe3O4@Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties[J]. ACS Appl. Mater. Interfaces, 2012, 4(12): 6436
[18] Meng F, Wei W, Chen X, et al.Design of porous C@Fe3O4 hybrid nanotubes toward their excellent microwave absorption[J]. Phys. Chem. Chem. Phys., 2015, 18(4): 2510
[19] Che R, Peng L M, Duan X, et al.Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv. Mater., 2014,16(5): 401
[20] Wang C, Xu T, Wang C A,Microwave absorption properties of C/(C@CoFe) hierarchical core-shell spheres synthesized by using colloidal carbon spheres as templates, Ceram. Int., 2016, 42(7): 9178
[21] Yao T, Cui T, Fang X, et al.Preparation of yolk-shell FexOy/Pd @mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2013, 5(13): 5896
[22] Wang X, Yu L, Hu P, et al.Synthesis of Single-Crystalline Hollow Octahedral NiO[J]. Crys. Growth Des., 2007, 7(12): 2415
[23] Titirici M M, Antonietti M, Thomas A, A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach[J]. Chem. Mater., 2006,18(16): 3808
[24] Jagadeesan D, Mansoori U, Mandal P, et al.Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single-Crystalline α-Fe2O3 Nanostructures[J]. Angew. Chem. Int. Ed., 2008, 47(40): 7685
[25] Zhang X F, Dong X L, Huang H, et al.Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. J. Phys. D: Appl. Phys., 2007, 40(17): 5383
[26] Roy D, Chhowalla M, Wang H, et al.Characterization of carbon nano-onions using Raman spectroscopy[J]. Chem. Phys. Lett., 2003, 373(1): 52
[27] Zhang Y J, Yao Q, Zhang Y, et al.Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres[J]. Cryst. Growth Des., 2008, 8(9): 3206
[28] Zhang Y J, Or S W, Zhang Z D, Hydrothermal self-assembly of hierarchical cobalt hyperbranches by a sodium tartrate-assisted route[J]. RSC Adv., 2011, 1(7): 1287
[29] Wang X, Yu J, Shi G, et al.Solvothermal synthesis of magnetite hollow submicrospheres and mesoporous nanoparticles[J]. J. Mater. Sci., 2014, 49(17): 6029
[30] Wang C, Han X, Zhang X, et al.Controlled Synthesis and Morphology-Dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies, J. Phys. Chem., C 2010, 114(7): 14826
[31] Sun G, Dong B, Cao M, et al.Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption[J]. Chem. Mater., 2011, 23(5): 1587
[32] Liu T, Pang Y, Zhua M, et al.Microporous Co@CoO nanoparticles with superior microwave absorption properties[J]. Nanoscale, 2014, 6(4): 2447
[33] Wang G, Peng X, Yu L, et al.Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition[J] J. Mater. Chem., A, 2015, 3(6): 2734
[34] Kittel C, on the theory of ferromagnetic resonance absorption[J]. Phys. Rev., 1948, 73(2): 155
[35] Aharoni A, Exchange resonance modes in a ferromagnetic sphere[J]. J. Appl. Phys., 1991, 69(11): 7762
[36] Sun Y, Liu X, Feng C, et al.A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber[J]. J. Alloys Comp., 2014, 586: 688
[37] Li X, Yi H, Zhang J, et al.Fe3O4-graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. J. Nanopart. Res., 2013, 15(3): 1472
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[3] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!