Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 161-167    DOI: 10.11901/1005.3093.2016.288
ARTICLES Current Issue | Archive | Adv Search |
Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma
Jieyi YU,Song GAO,Xinglong DONG()
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China
Cite this article: 

Jieyi YU,Song GAO,Xinglong DONG. Electrochemical Performance of Si Nanoribbons as Anode Material for Li-ion Battery Synthesized by Arc-discharge Plasma. Chinese Journal of Materials Research, 2017, 31(3): 161-167.

Download:  HTML  PDF(852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silicon nanoribbons (Si-NRs) were successfully synthesized by direct-current (DC) arc-discharge plasma in a mixed atmosphere of hydrogen and helium, and then characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS), etc.. This work provides a low cost preparation method for the synthesis of Si-NRs, and it could be commercially produced with a production rate of 18.6 gh-1. The Si NRs consist of fine sheets of ca 28 nm in width, over 200 nm in length and ca 6.2 nm in thickness with specific surface area of 164 m2g-1. The measured electrochemical performance of the Si-NRs as anode of lithium ion batteries reveals that the first discharge specific capacity is 2460 mAhg-1 and it reaches to 316 mAhg-1 after 40 cycles, which exhibits a high activity of insertion/desertion of Li+ ions and possible potentials for further improvement of the cycle stability.

Key words:  inorganic non-metallic materials      silicon nanoribbon      direct-current arc-discharge      electrochemical reaction      lithium-ion battery      anode material     
Received:  26 May 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51331006 & 51271044)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.288     OR     https://www.cjmr.org/EN/Y2017/V31/I3/161

Fig.1  TEM and HRTEM images

(a, b), AFM image (c) and horizontal cross section profile (d) taken along the line in (c) of silicon nanoribbons

Fig.2  XRD patterns(a) and Raman spectra(b) of bulk Si and Si NRs, and XPS spectra (c)of Si 2p electrons and Nitrogen adsorption-desorption isotherms (c) of Si NRs
Fig.3  Electrochemical performances of Si NRs, electrode for LIBs

(a) cyclic voltammograms from 0.01 to 2.5 V, at a scan rate of 0.1 mVs-1; (b) the initial two charge/discharge curves at a current density of 100 mAg-1, between 0.01 and 2.0 V; (c) cycling performance at a constant current density of 100 mAg-1, between 0.01 and 2.0 V; (d) nyquist plots before cycling and after three cycles

[1] Edward H.Kottcamp, Volume 3, Alloy Phase Diagrams[M]. USA:The Materials Information Company, 1992
[2] Niu J., Zhang S.,Niu Y., et al.Silicon-based anode materials for lithium-ion batteries[J]. Prog. Chem., 2015, 27(9): 1275
[3] Rtu J. H., Kim J. W., Sung Y. E., et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochem. Solid ST., 2004, 7(10): A306
[4] Beaulieu L. Y., Eberman K. W., Turner R. L., et al. Colossal reversible volume changes in lithium alloys[J]. Electrochem.Solid ST., 2001, 4(9): A137
[5] Kim I. S., Blomgren G. E., Kumta P. N. Nanostructured Si?/TiB2 composite anodes for Li-?ion batteries[J]. Solid-State Lett., 2003, 6(8): A157
[6] Tedd A., Ferguson P. P., Barker J. G., et al. Comparison of mechanically milled and sputter deposited tin-?cobalt-?carbon alloys using small angle neutron scattering[J]. J. Electrochem. Soc., 2009, 156(12): A1034
[7] Yang J., Winter M., Besnhard J. O. Small particle size multiphase Li-?alloy anodes for lithium-?ion-?batteries[J]. Solid State Ionics, 1996, 90(s1-4): 281
[8] Yang J., Wachtler M., Winter M., Sub-?microcrystalline Sn and Sn-?SnSb powders as lithium storage materials for lithium-?ion batteries[J].Electrochem.Solid ST., 1999, 2(4): 161
[9] Chen I. W., Xue L. A., Development of superplastic structural ceramics[J]. J. Am. Ceram. Soc., 1990, 73(9): 2585
[10] Besnhard J. O., Yang J., Wachtler M., et al. Will advanced lithium-?alloy anodes have a chance in lithium-?ion batteries?[J]. J. Power Sources, 1997, 68(1): 87
[11] Kulish V. V., Malyi O. I., Ng M. F., et al. Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations[J].RSC Adv., 2013, 3(13): 4231
[12] Lu Z., Sim D., Zhou W., et al.Synthesis of ultrathin silicon nanosheets by using graphene oxide as template[J]. Chem. Mater., 2011, 23(24): 5293
[13] Shi W., Peng H., Wang N., et al.Free-?standing single crystal silicon nanoribbons[J]. J. Am. Chem. Soc., 2001, 123(44): 11095
[14] Wei D. P., Chen Q. Metal-?catalyzed CVD method to synthesize silicon nanobelts[J]. J. Phys. Chem. C, 2008, 112(39): 15129
[15] Okamoto H., Kumai Y., Sugiyama Y., et al.Silicon nanosheets and their self-?assembled regular stacking structure[J], J. Am. Chem. Soc., 2010, 132(8): 2710
[16] Zhang S. L., Raman spectroscopy and its application in nanostructures[M]. West Sussex: A John Wiley & Sons Ltd. Publication, 2012.
[17] Faraci G., Gibilisco S., Pennisi A. R., et al. Quantum size effects in Raman spectra of Si nanocrystals[J].J. Appl. Phys., 2011, 109(7): 074311
[18] Faraci G., Gibilisco S., Russo P., et al.Modified Raman confinement model for Si nanocrystals[J]. Phys. Rev. B, 2006, 73(3): 033307
[19] Meier C., LuttjohannS., Kravets V. G., et al. Raman properties of silicon nanoparticles[J]. Physica E, 2006, 32(1-2): 155
[20] Nakano H., Nakano M., Nakaknishi K., et al.Preparation of alkyl-?modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6)[J]. J. Am. Chem. Soc., 2012, 134(12): 5452
[21] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 450-451
[22] Yatsuta S., Kasukabe S., Uyeda R., Formation of ultrafine metal particles by gas evaporation technique. I. Aluminum in helium[J]. Japanese J. Appl. Phys., 1973, 12(11): 1675
[23] Kasukabe S.,Yatsuta S., Uyeda R.,Ultrafine metal particles formed by the gas-?evaporation technique. II. Crystal habits of magnesium, manganese, beryllium, and tellurium[J]. Japanese J. Appl. Phys., 1974, 13(11): 1714
[24] Saito Y., Yatsuya S., Mihama K., Uyeda R., Formation of ultrafine particles by gas-?evaporation technique. V. Silicon and germanium in argon[J].Japanese J. Appl. Phys., 1978, 17(2): 291
[25] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M].New Jersey: World Scientific Hackensack, 2011, 21-23
[26] Yu J. Y., Gao J., Xue F. H., et al. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-?discharge[J]. RSC Adv., 2015, 5(84): 68714
[27] Cao G. Z., Wang Y., Nanostructures and nanomaterials: synthesis, properties, and applications[M]. New Jersey: World Scientific Hackensack, 2011 pp 152-153
[28] Hartman P., Perdok W. G., Relations between structure and morphology of crystals[J]. Acta Crystallogr., 1955, 8: 49
[29] Ohno T., Yatsuya S., Uyeda R., Formation of ultrafine metal particles by gas-?evaporation technique. III. Aluminum in helium, argon, and xenon, and magnesium in mixtures of inactive gas and air[J]. Japanese J. Appl. Phys., 1976, 15(7): 1213
[30] Hayashi T., Ohno T., Yatsuya S., et al.Formation of ultrafine metal particles by gas-?evaporation technique. IV. Crystal habits of iron and fcc metals, aluminum, cobalt, nickel, palladium, silver, indium, gold and lead[J]. Japanese J. Appl. Phys., 1977, 16(5): 705
[31] Chou S., Wang J., Choucair M., et al.Enhanced reversible lithium storage in a nanosize silicon?/graphene composite[J]. Electrochem. Comm., 2010, 12(2): 303
[32] Magasinski A., Dixon P., Hertzberg B., et al.High-?performance lithium-?ion battery anodes using a hierarchical bottom-?up approach[J]. Nat. Mater., 2010, 9(4): 353
[33] Lu Z., Zhu J., Sim D., et al.In situ growth of Si nanowires on graphene sheets for Li-?ion storage[J]. Electrochim. Acta, 2012, 74: 176
[34] Wang J. T., Wang Y., Huang B., et al. Silicon supportedon stable Si-O-C skeletonin high-performance lithium-ion battery anode materials[J].Acta Phys.-Chim.Sin., 2014, 30(2):305.
[35] Chen K., Bao Z. H., Liu D., et al. Confined synthesis and properties of porous silicon from silica aerogel templates by magnesiothermic reduction[J].Acta Phys.-Chim.Sin., 2011, 27(11):2719.
[36] Zhang T., Gao J., Fu L., et al.Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries[J].J. Mater. Chem., 2007, 17(13):1321.
[37] Kunai Y., Shirai S., Sudo E., et al.Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries[J].J. Power Sources, 2011, 196(3):1503.
[38] Guo Z. P., Zhao Z. W., Liu H. K., et al. Electrochemical lithiation and de-?lithiation of MWNT-?Sn?/SnNi nanocomposites[J].Carbon, 2005, 43(7):1392.
[39] Peng Y., Chen Z., Wen J.,et al.Hierarchical manganese oxide?/carbon nanocomposites for supercapacitor electrodes[J].Nano Res., 2011, 4(2):216
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. 材料研究学报, 2022, 36(8): 602-608.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!