Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 721-727    DOI: 10.11901/1005.3093.2016.226
ARTICLES Current Issue | Archive | Adv Search |
Effect of Applied Pulsed Magnetic Field during Directional Solidification on Solidified Structure of H13 Steel
Jianwei ZHANG, Yingju LI, Yuansheng YANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jianwei ZHANG, Yingju LI, Yuansheng YANG. Effect of Applied Pulsed Magnetic Field during Directional Solidification on Solidified Structure of H13 Steel. Chinese Journal of Materials Research, 2017, 31(10): 721-727.

Download:  HTML  PDF(1921KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pulsed magnetic field (PMF) on the solidified structure of H13 steel during directional solidification with various growing rates was investigated. It was found that the primary dendrite arm spacing (λ1) and the secondary dendrite arm spacing (λ2) both decreased under the PMF with exciting voltages in a range of 50 V-200 V. λ1 and λ2 decreased with the increase of exciting voltage. With the increase of magnetic field frequency, λ1 and λ2 firstly decreased and then increased. While with the increase of growing rate, the reduction degree of λ1 and λ2 decreased. The PMF causes melt convection during directional solidification, which brings hot melt in the heating zone to the solidification front, thus the temperature gradient near the solidification front increases, leading to the decrease of λ1 and λ2.

Key words:  metallic materials      pulsed magnetic field      directional solidification      dendrite arm spacing      H13 steel     
Received:  26 April 2016     
ZTFLH:  TG111  
Fund: Supported by National Natural Science Foundation of China (Nos.51674236 & 51034012)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.226     OR     https://www.cjmr.org/EN/Y2017/V31/I10/721

Fig.1  Schematic of experimental apparatus
Fig.2  Dendrites in H13 steel directionally solidified with various pulsed voltages Transverse section: (a1), 0 V; (b1), 50 V; (c1), 100 V; (d1), 150 V; (e1), 200 V; Longitudinal section: (a2), 0 V; (b2), 50 V; (c2), 100 V; (d2), 150 V; (e2), 200 V
Fig.3  Dendrite arm spacings of H13 steel directionally solidified with various pulsed voltages
Fig.4  Dendrites in H13 steel directionally solidified with various magnetic field frequencies Transverse section: (a1), 0 Hz; (b1), 2.5 Hz; (c1), 5 Hz; (d1), 10 Hz; (e1), 20 Hz; Longitudinal section: (a2), 0 Hz; (b2), 2.5 Hz; (c1), 5Hz; (d1), 10 Hz; (e1), 20 Hz
Fig.5  Dendrite arm spacings of H13 steel directionally solidified with various magnetic field frequencies
Fig.6  Dendrites in H13 steel directionally solidified at various pulling velocities on transverse section without PMF: (a) 30 μm/s; (c) 70 μm/s; (e) 130 μm/s; with 5 Hz/200 V PMF: (b) 30 μm/s; (d) 70 μm/s; (f) 130 μm/s
Fig.7  Dendrites in H13 steel directionally solidified at various pulling velosities on longitudinal section without PMF: (a) 30 μm/s; (b) 70 μm/s; (c) 130 μm/s; with PMF of 5 Hz/200 V: (d) 30 μm/s; (e) 70 μm/s; (f) 130 μm/s
Fig.8  Dendrite arm spacings of H13 steel directionally solidified with various pulling velocities: (a) primary dendrite arm spacings; (b) secondary dendrite arm spacings
Fig.9  Schematic illustration of the effect of melt flow on the temperature gradient at solidification front: (a) without PMF; (b) with PMF
Fig.10  Dendrites in H13 steel directionally solidified on longitudinal section: (a) without PMF; (b) with 5 Hz/200 V
[1] Zhang L, Li W, Yao J P, et al.Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry[J]. Mater. Lett., 2015, 66(1): 190
[2] Zi B T, Cui J Z, Ba Q X.Comparison of the solidified structures in LY12 Al-alloy under pulsed electric current and pulsed magnetic field[J]. Hot Working Technol., 2000, 4: 3(訾炳涛, 崔建忠, 巴启先, 脉冲电流和脉冲磁场作用下 LY12 铝合金凝固组织的比较[J]. 热加工工艺, 2000, 4: 3)
[3] Li Y J, Tao W Z, Yang Y S.Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field[J]. J. Mater. Processing Tech., 2012, 212(4): 903
[4] Wang B, Yang Y S, Sun M L.Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field[J]. Trans. Nonferrous Met. Soc. China, 2010, 20(9): 1685
[5] Wang B, Yang Y S, Zhou J X, et al.Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J]. Trans. Nonferrous Met. Soc. China, 2008, 18(3): 536
[6] Wang B, Yang Y S, Zhou J X, et al.Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy[J]. Rare Metal Mater. Eng., 2009, 38(3): 519(汪彬, 杨院生, 周吉学等. 脉冲磁场对 Mg-Gd-Y-Zr 合金凝固及力学性能的影响, 稀有金属材料与工程, 2009, 38(3): 519)
[7] Fu J W, Yang Y S.Formation of the solidified microstructure of Mg-Al-Zn alloy under a low-voltage pulsed magnetic field[J]. J. Mater. Res., 2011, 26(14): 1688
[8] Ma X P, Li Y J, Yang Y S.Grain refinement effect of pulsed magnetic field on as-cast superalloy K417[J]. J. Mater. Res., 2009, 24(8): 2670
[9] Teng Y F, Feng X H, Li Y J, et al.Grain refinement of as cast superalloy K4169 solidified with low voltage pulsed magnetic field[J]. Mater. Res., Innov., 2014, 18: 352
[10] Ma X P, Li Y J, Yang Y S.Grain refinement effect of pulsed magnetic field on solidified microstructure of superalloy IN718[J]. J. Mater. Res., 2009, 24: 3174
[11] Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Tech. 2017, 33: 105
[12] Li Y J, Teng Y F, Yang Y S.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Met. Mater. Int., 2014, 20(3): 527
[13] Zhao Z L, Zhang R, Liu L, et al.Evolvement of Al-Cu eutectic unidirectionally solidified morphology in high intensity pulsed magnetic field[J]. Chin. J. Mater. Res., 2005, 19(2): 207(赵志龙, 张蓉, 刘林等. 强脉冲磁场中 Al-Cu 共晶定向凝固组织的演变[J]. 材料研究学报, 2005, 19(2): 207)
[14] Song C J, Li Q S, Li H B, et al.Effect of pulse magnetic field on microstructure of austenitic stainless steel during directional solidification[J]. Mater. Sci. Eng. A, 2008, 485(1-2): 403
[15] Liotti E, Lui A, Vincent R, et al.A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an A1-15Cu alloy[J]. Acta Mater., 2014, 70: 228
[16] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Beijing: Higher Education Press, 2010(Kurz W, Fisher D J.凝固原理[M]. 北京: 高等教育出版社, 2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!