Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (9): 703-710    DOI: 10.11901/1005.3093.2016.178
ARTICLES Current Issue | Archive | Adv Search |
Performance by Localized Indentation Test of Composite Sandwich of Open-cell Aluminum Foam and Epoxy Resin
Yajun XIN,Bo XIAO,Shuliang CHENG,Huijian LI
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Provice, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

Yajun XIN,Bo XIAO,Shuliang CHENG,Huijian LI. Performance by Localized Indentation Test of Composite Sandwich of Open-cell Aluminum Foam and Epoxy Resin. Chinese Journal of Materials Research, 2016, 30(9): 703-710.

Download:  HTML  PDF(6061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By carrying out quasi-static localized indentation tests, failure modes and typical load-displacement curves of composite sandwich of open-cell aluminum foam and epoxy resin were studied. It was also compared with the traditional sandwich panel. The influence of composite layer thickness, indenter type and boundary condition on the localized indentation stiffness, ultimate bearing capacity and energy absorption capacity were analyzed. The results indicate that this kind of composite sandwich panel has good integrality, stability and energy absorption capacity in the condition of indentation. Load-displacement curves have gone through four phases: elastic phase, local damage phase, overall damage phase and punching failure phase. Mechanical properties of sandwich panel have been obviously improved by the over lapped layers of aluminum foam and epoxy resin. Also, there exists an increasing tendency of the mechanical property of the panel with the increase of composite layer thickness. Failure modes and mechanical properties of specimens with spherical indenter are very different from cylindrical indenter and square indenter. Mechanical properties of specimens, which were simply supported are poorer than specimens, which were fully fixed. The stiffness, strength, energy absorption capacity and integrality of composite sandwich panel are superior to those of the traditional sandwich panel.

Key words:  composite      sandwich panel      aluminum foam and epoxy resin      composite sandwich panel      indentation     
Received:  05 April 2016     
Fund: *Supported by the Natural Science Foundation of Hebei Province, No E2013203183 and the Science and Technology Fund of Minstry of Housing and Urban-Rural Development, No2013-K2-2

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.178     OR     https://www.cjmr.org/EN/Y2016/V30/I9/703

Fig.1  Schematic diagram of the specimen. H- the specimen's height; δ- the immersed resin thickness; h- the core's thickness; l- the length of specimen edges
Fig.2  Test specimen sample
Group. Composite layer thickness δ /mm Boundary
conditions
Indenter
shapes
G1-1/2/3 0 Fully fixed Cylindrical
G2-1/2/3 2.5 Fully fixed Cylindrical
G3-1/2/3 4 Fully fixed Cylindrical
G4-1/2/3 2.5 Fully fixed Square
G5-1/2/3 2.5 Fully fixed Spherical
G6-1/2 2.5 Simply supported Cylindrical
G7-1 0.5 mm aluminum Fully fixed Cylindrical
Table 1  Specimens number and parameter
Fig.3  Different destruction stages and forms of specimens (a1)-(a5) cylindrical indenter, fully fixed; (b1)-(b5) square indenter, fully fixed; (c1)-(c5) spherical indenter, fully fixed; (d1)-(d5) cylindrical indenter, simply supported
Fig.4  Force-displacement curves (a) experiment force-displacement curves for spenciments of G2, G3, G4, G5 groups; (b) typical fprce-displacement curves
Fig.5  Cross sections of different destruction stages
Fig.6  Destruction forms for different composite layer thickness. G1 composite layer thickness 0 mm; G2 composite layer thickness 2.5 mm; G3 composite layer thickness 4 mm
Fig.7  Force-displacement curves for group 1/2/3 G1 composite layer thickness 0 mm; G2 composite layer thickness 2.5 mm; G3 composite layer thickness 4 mm
Fig.8  Localized indentation stiffness, ultimate bearing capacity and energy absorption for group 1/2/3 G1 composite layer thickness 0 mm; G2 composite layer thickness 2.5 mm; G3 composite layer thickness 4 mm
Fig.9  Force-displacement curves for group 2/4/5 G2 cylindrical indenter; G4 square indenter; G5 spherical indenter.
Fig.10  Localized indentation stiffness, ultimate bearing capacity and energy absorption for group 2/4/5 G2 cylindrical indenter; G4 square indenter; G5 spherical indenter
Fig.11  Force-displacement curves for group 2/6 G2 fully fixed; G6 simply supported.
Fig.12  Localized indentation stiffness, ultimate bearing capacity and energy absorption for group 2/6 G2 fully fixed; G6 simply supported
Fig.13  Destruction stages and forms of traditional sandwich panel G2 composite layer thickness 2.5 mm; G7 0.5 mm aluminum
Fig.14  Force-displacement curves for group 2/7 G2 composite layer thickness 2.5 mm; G7 0.5 mm aluminum
Fig.15  Localized indentation stiffness, ultimate bearing capacity and energy absorption for group 2/7 G2 composite layer thickness 2.5 mm; G7 0.5 mm aluminum
[1] J. Tbeals, M. S. Thompson, Density gradient effection aluminum foam compressive behavior, Journal of Materials Science, 32(13), 3593(1997)
[2] WANG Bin, HE Deping, SHU Guangji, Compressive property and energy-absorption of foamed AI alloy, Acta Metallurgica Sinica, 36(10), 1037(2000)
[2] (王斌, 何德坪, 舒光冀, 泡沫AI合金的压缩性能及其能量吸收, 金属学报, 36(10), 1037(2000))
[3] M. A. Yahaya, D. Ruan, Response of aluminum honeycomb sandwich panels subjected to foam projectile impact-An experimental study, International Journal of Impact Engineering, 75(1), 100(2015)
[4] J. Banhart, Manufacture characterization and application of cellular metals and metal foams, Progress in Materials Science, 46(6), 559(2001)
[5] YU Yinghua, LI Zhichao, LIU Jingfu, Research present situation and prospect for application on porous foam aluminum, Journal of Liaoning Technical University, 22(2), 259(2003)
[5] (于英华, 李智超, 刘敬福, 多孔泡沫铝性能研究现状及应用前景展望, 辽宁工程技术大学学报, 22(2), 259(2003))
[6] ZHAO Wanxiang, ZHAO Naiqin, GUO Xinquan, Study progress for new type functional materials of foam aluminum, Heat Treatment of Metals, 29(6), 7(2004)
[6] (赵万祥, 赵乃勤, 郭新权, 新型功能材料泡沫铝的研究进展, 金属热处理, 29(6), 7(2004))
[7] H. W. Seeliger, Aluminum foam sandwich (AFS) ready for market introduction, Advanced Engineering Materials, 6(6), 448(2004)
[8] S. Dirk, S. Hans-Wolfgang, Aluminum foam sandwich structure for space application, Acta Astronautca, 61(1), 326(2007)
[9] JING Lin, WANG Zhihua, ZHAO Longmao, Advances in studies of the mechanical performance of cellular metals and related sandwich structures, Mechanics in Engineering, 37(3), 1(2015)
[9] (敬霖, 王志华, 赵隆茂, 多孔金属及其夹芯结构力学性能的研究进展, 力学与实践, 37(3), 1(2015))
[10] S. R. Reid, T. Y Reddy, Experimental investigation of interia effects in one-dimensional metal ring systems, International Journal of Impact Energy, 1(1), 277(1983)
[11] Moon Sik HAN, Jae Ung CHO, Impact damage behavior of sandwich composite with aluminum foam core, Transactions of Nonferrous Metals Society of China, 24(S1), s42(2014)
[12] Q. M. Li, H. Meng, Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material, International Journal of Impact Engineering, 27(10), 1049(2002)
[13] JING Lin, WANG Zhihua, SONG Yanze, ZHAO Longmao, Dynamic response of a cellar metal sandwich panel subjected to metal foam projectile impact, Journal of Vibration and Shock, 30(12), 22(2011)
[13] (敬霖, 王志华, 宋延泽, 赵隆茂, 泡沫金属子弹撞击载荷下多孔金属夹芯板的动态响应, 振动与冲击, 30(12), 22(2011))
[14] PANG Baojun, ZHENG Wei, CHEN Yong, Dynamic impact behavior of aluminum foam with a taylor impact test and a theoretical analysis, Journal of Vibration and Shock, 32(12), 154(2013)
[14] (庞宝君, 郑伟, 陈勇, 基于Taylor实验及理论分析的泡沫铝动态特性研究, 振动与冲击, 32(12), 154(2013))
[15] WANG Qingchun, FAN Zijie, GUI Liangjin, WANG Zhenghong, FU Zilai, Energy absorption behavior of aluminum foam under medium strain rate, Chinese Journal of Materials Research, 19(6), 601(2005)
[15] (王青春, 范子杰, 桂良进, 王政红, 付自来, 中等应变率下泡沫铝的吸能特性, 材料研究学报, 19(6), 601(2005))
[16] SHANG Jintang, HE Deping, Deformation of sandwich beams with Al foam cores in three-point bending, Chinese Journal of Materials Research, 17(1), 31(2003)
[16] (尚金堂, 何德坪, 泡沫铝层合梁的三点弯曲变形, 材料研究学报, 17(1), 31(2003))
[17] LIU Xinrang, TIAN Xiaogeng, LU Tianjian, LIANG Bin, WANG Yiqing, Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores, Journal of Vibration and Shock, 31(23), 166(2012)
[17] (刘新让, 田晓耕, 卢天健, 梁斌, 王伊卿, 泡沫铝夹心圆筒抗爆性能研究, 振动与冲击, 31(23), 166(2012))
[18] G. Reyes Villanueva, W. J. Cantwell, Low velocity impact response of novel fiber-reinforced aluminum foam sandwich structures, Journal of Materials Science Letters, 22(6), 417(2003)
[19] K. Mohan, H. P. Seow, I. Sridhar, T. H, Yip, Effects of face sheet material in the indentation response of metallic foams, Journal of Material Science, 42(11), 3714(2007)
[20] O. B. Olurin, F. A. Fleck, M. F. Ashby, Indentation resistance of an lauminium foam, Scripta Materialia, 43(11), 983(2000)
[21] D. Ruan, G. X. Lu, Quasi-static indentation tests on aluminum foam sandwich panels, Composite Structures, 92(9), 2039(2010)
[22] LI Zhibin, LU Fangyun, Tests for indentation and perforation of sandwich panels with aluminium foam core, Journal of Vibration and Shock, 34(4), 1(2015)
[22] (李志斌, 卢芳云, 泡沫铝夹芯板压入和侵彻性能的实验研究, 振动与冲击, 34(4), 1(2015))
[23] ZHANG Min, CHEN Changjun, YAO Guangchun, Manufacturing technology of AI foam sandwich, Materials Review, 22(1), 85(2008)
[23] (张敏, 陈长军, 姚广春, 泡沫铝夹芯板的制备技术, 材料导报, 22(1), 85(2008))
[24] HE Chenchong, LU Wei, WANG Gang, YAN Biao, Preparation methods of aluminum foams and aluminum foam sandwichs, Metallic Functional Materials, 19(5), 10(2012
[24] )(何晨冲, 陆伟, 王岗, 严彪, 泡沫铝及泡沫铝夹心板的制备方法, 金属功能材料, 19(5), 10(2012))
[25] XIN Yajun, LI Huijian, ZHAO Xuya, CHENG Shuliang, YU Wei, Compression and bending tests on integrated composite sandwich panel of epoxy resin/aluminum foam, Journal of Experimental Mechanics, 30(4), 421(2015)
[25] (辛亚军, 李慧剑, 赵旭亚, 程树良, 余为, 环氧树脂/泡沫铝一体型复合夹层板压缩及弯曲试验研究, 实验力学, 30(4), 421(2015))
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!