Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (9): 697-702    DOI: 10.11901/1005.3093.2015.601
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Inhibition of Silver by HDT Self-assembled Monolayers
Wenye LU1,Dieyi CHEN2,Tao TANG1,Burong CHEN1,*
1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2. Kuang Yaming School, Nanjing University, Nanjing 210023, China
Cite this article: 

Wenye LU,Dieyi CHEN,Tao TANG,Burong CHEN. Corrosion Inhibition of Silver by HDT Self-assembled Monolayers. Chinese Journal of Materials Research, 2016, 30(9): 697-702.

Download:  HTML  PDF(1936KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The self-assembled monolayers (SAMs) of hexadecane-thiol (HDT) were prepared on silver surface in ethanol solution. The adsorption behavior of HDT SAMs on silver surface and their corrosion inhibition were investigated by means of polarization curve, reflectance, EPMA, AFM and XPS. The results indicate that the HDT SAMs are dense and stable and do not affect the original appearance of silver, while exhibit also excellent inhibiting effect. In the solution with 0.05 mol/ dm3 Na2S, the inhibition efficiency is up to 91.7% for the HDT SAMs prepared in the ethanol solution with 0.1 mol/dm3 HDT. The polarization curve shows that HDT acts as a mixed type inhibitor with cathodic inhibition as dominative action. The adsorption of HDT on the silver surface obeys the Langmuir adsorption law and contains both physisorption and chemisorption.

Key words:  metallic materials      hexadecane-thiol      self-assembled monolayer      silver      corrosion inhibition     
Received:  02 December 2015     
Fund: *Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.601     OR     https://www.cjmr.org/EN/Y2016/V30/I9/697

Fig.1  Potential-time curve for silver electrode in assembling HDT SAMs
Fig.2  Polarization curves of silver electrodes immersed in 0.05 mol/L Na2S solution and assembled for different concentration of HDT solution
C / molL-1 Ecorr/mV ba/mVdec-1 -bc/mVdec-1 Icorr/μAcm-2 η / %
Blank -887 49.84 216.74 1.1701 -
0.005 -903 37.24 210.08 0.4164 64.4
0.01 -901 36.75 209.87 0.2479 78.8
0.05 -923 37.66 206.86 0.1369 88.3
0.1 -928 36.51 180.43 0.0975 91.7
Table 1  Electrochemical parameters of silver electrodes immersed in 0.05 mol/L Na2S solution with different concentrations of HDT SAMs
Fig.3  Results of accelerated tarnish test (a) blank and (b) HDT
Fig.4  Reflectance of the bare silver and HDT SAMs covered silver
Fig.5  EPMA specrta of HDT SAMs covered silver
Element Line Peak WL/nm K-ratio Mass/%
C Ka 4.45091 0.00594 0.68
S Ka 0.53741 0.00149 0.12
Ag La 0.41545 0.99257 99.19
Table 2  Composition of HDT SAMs covered silver
Fig.6  AFM image of HDT SAMs covered silver with tapping mode
Fig.7  XPS spectra of bare silver (a) and silver with HDT SAMs (b)
Fig.8  XPS spectra of the O1s region for the bare sliver and silver with HDT SAMs
Fig.9  XPS spectra of the S2p region for the HDT SAMs covered silver
Fig.10  Curve fitting of the corrosion data for silver electrode according to Langmuir thermodynamic kinetic model
[1] A. Ulman, Formation and structure of self-assembled monolayers, Chemical Reviews, 96(4), 1533(1996)
[2] G. K. Jennings, J. C. Munro, T. H. Yong, P. E. Laibinis, Effect of chain lengthon the protection of copper by n-alkanethiols, Langmuir, 14(21), 6130(1998)
[3] LIANG Chenghao, YANG Changjang, HUANG Nanbao, JIN Guangming, Anti-tarnish characteristics and formation mechanism of self-assembled monolayers on surface of silver coins, Rare Metal Materials and Engineering, 42(7), 1411(2013)
[3] (梁成浩, 杨长江, 黄乃宝, 金光明, 银币表面自组装膜抗变色性能及成膜机理, 稀有金属材料与工程, 42(7), 1411(2013))
[4] M. C. Bernard, E Dauvergne, M. Evesque, M. Keddam, H. Takenouti, Reduction of silver tarnishing and protection against subsequent corrosion, Corrosion Science, 47(3), 663(2005)
[5] C. H. Liang, C. J. Yang, N. B Huang, Tarnish protection of silver by octadecanethiol self-assembled monolayers prepared in aqueous micellar solution, Surface & Coatings Technology, 203(8), 1034(2009)
[6] P. E. Laibinis, G. M. Whitesides, ω-Terminated alkanethiolate monolayers on surfaces of copper, silver and gold have similar wettabilities, Journal of the American Chemical society, 114(6), 1990(2002)
[7] YANG Changjang, LIANG Chenghao, ZHANG Xu, Self-assembled monolayers prepared on silver surface in aqueous micellar solution, Rare Metal Materials and Engineering, 39(9), 1676(2010)
[7] (杨长江, 梁成浩, 张旭, 水溶液中银表面自组装膜工艺, 稀有金属材料与工程, 39(9), 1676(2010))
[8] DU Wei, WAN Li, LI Jiajia, CHEN Burong, DING Yi, Anticorrosion action and adsorption mechanism of the self-assemble monolayers on silver in aqueous solution. Rare Metal Materials and Engineering, 42(3), 545(2013)
[8] (杜伟, 万俐, 李佳佳, 陈步荣, 丁毅, 水溶液中自组装膜对银的缓蚀作用及吸附机理分析, 稀有金属材料与工程, 42(3), 545(2013))
[9] ZHANG Baogen, WEN Xiaohe, DONG Shujing, Test method for resisting discoloration of silver-faced layer, High Voltage Apparatus, 40(6), 427(2004)
[9] (张宝根, 文小和, 东树景, 银镀层抗腐蚀变色的测定方法, 高压电器, 40(6), 427(2004))
[10] CAO Chunan, Principles of Erosive Electrochemistry (Beijing, Chemical Industry Press, 2004) p.233
[10] (曹楚南, 腐蚀电化学原理 (北京, 化学工业出版社, 2004) p.233)
[11] S. A. Pauline, S. Sahila, C. Gopalakrishnan, S. Nanjundan, N. Rajendran, Synthesis, characterization and corrosion protection property of terpolymers derived from poly (MAn-co-MMA) containing benzimidazole derivative as pendant group, Progress in Organic Coatings, 72(3), 443(2011)
[12] E. S. M.Sherif, R. M Erasmus, J. D. Comins, Effects of 3-amino-1, 2, 4-triazole on the inhibition of copper in acidic chloride solutions, Journal of Colloid and Interface Science, 311(1), 144(2007)
[13] P. E. Laibinis, G. M .Whitesides, D, Allara, T. T. Yu, A. N. Parikh, R. G. Nuzzo, Comparison of the structres and wetting properties of self-assembled monolayer of n-alkanethiols on the coinage metal surface, Cu, Ag, Au, Journal of the American Chemical Socirty, 113(19), 7151(1991)
[14] R. Agrawal, T. K. G.Namboodhiri, The inhibition of sulphuric acid corrosion of 410 stainless by thioureas, Corrosion Science, 30(1), 37(1990)
[15] M. Elayyachy, A. El-Idrissi, B. Hammouti .New thio-compounds as corrosion inhibitor for steel in 1M HCL, Corrosion Science, 48(9), 2470(2006)
[16] Y. M. Tang, X. Y. Yang, W. Z. Yang, A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1, 3, 4-thiadiazole: Polarization, EIS and molecular dynamics simulations, Corrosion Science, 52(5), 1801(2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!