Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (12): 947-954    DOI: 10.11901/1005.3093.2016.174
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Activity of Schiff Base Cobalt Porphyrin-TiO2 Composites
Jinfen NIU1,*(),Guangchao HAN2,Peixuan DAI1,Binghua YAO1,Cunrui LIU1,Yu WANG1
1. Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, China
2. Department of Organic Chemistry, Liaoning University, Shenyang 110036, China
Cite this article: 

Jinfen NIU,Guangchao HAN,Peixuan DAI,Binghua YAO,Cunrui LIU,Yu WANG. Preparation and Photocatalytic Activity of Schiff Base Cobalt Porphyrin-TiO2 Composites. Chinese Journal of Materials Research, 2016, 30(12): 947-954.

Download:  HTML  PDF(2347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Schiff base cobalt porphyrin, namely N-(5-p-phenyl) -10, 15, 20-triphenyl porphyrin-nitrophenyl azomethine, denoted as XFJ-Co-TPP, was prepared by chemical synthetic method. Using XFJ-Co-TPP as sensitizer, anatase TiO2 samples were impregnated with metal porphyrin to form XFJ-Co-TPP-TiO2 composite photocatalysts. The photocatalysts were characterized by FT-IR, UV-Vis DRS, XRD and SEM. The results showed that the as-synthesised Schiff base cobalt porphyrins were target compound, which were successfully depositedon the surface of TiO2. The photocatalytic activity of XFJ-Co-TPP-TiO2 composite photocatalysts was investigated throughthe photocatalysts assisted degradation of methylene blue(MB) and Rhodamine B (RhB) under visible light irradiation. It was found that XFJ-Co-TPP-TiO2 composite exhibited much higher photodegradation efficiency than the bare TiO2 catalysts. The effect of various radical scavengers on the degradation of RhB with XFJ-Co-TPP-TiO2-1 as catalyst showed thath+ was likely to be major active specie responsible for the dye degradation under visible light.

Key words:  inorganic non-metallic materials      Schiff base porphyrin      TiO2      sensitize      photocatalytic     
Received:  01 April 2016     
Fund: *Supported by Scientific Research Program Funded by Shaanxi Provincial Education Department No. 16JK1546, College Students' Innovative Entrepreneurial Training Program of Shaanxi No. 306-251051570, Doctoral Start-up Fund of Xi'an University of Technology No. 108211309, Programme of Young Scientists Innovation Team Funded by Xi'an University of Technology No. 108-00T1402.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.174     OR     https://www.cjmr.org/EN/Y2016/V30/I12/947

Fig.1  Structure of XFJ-Co-TPP
Fig.2  The synthetic route of XFJ-Co-TPP
Fig.3  FT-IR spectra of TiO2, XFJ-Co-TPP and XFJ-Co-TPP-TiO2
Fig.4  UV-vis diffraction spectra of different photocatalysts
Fig.5  XRD patterns recorded for different photocatalysts
Fig.6  SEM images of different photocatalysts (a) TiO2; (b) CoTCPP-TiO2; (c) mapping of Ti, O, N and Co
Fig.7  MB degradation under visible light illumination in the presence of various photocatalyst (a), ln(C0/C) versus time for various photocatalyst (b)
Fig.8  RhB degradation under visible light illumination in the presence of various photocatalyst (a); ln(C0/C) versus time for various photocatalyst (b); the UV-vis spectral changes of RhB over XFJ-Co-TPP-TiO2-1 (c); Recycling properties of XFJ-Co-TPP-TiO2-1 (d)
Fig.9  Structural formula of MB and RhB
Fig.10  Active specie trapping experiments for catalysts
1 Y. Xia, Y. S. Jiang, F. F. Li, M. S. Xia, B. Xue, Y. J. Li, Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2, Applied Surface Science, 289, 306(2014)
2 L. Y. Hu, J. Y. Wang, J. X. Zhang, Q. Y. Zhang, Z. H. Liu, An N-doped anatase/rutile TiO2 hybrid from low-temperature direct nitridization: enhanced photoactivity under UV-/visible-light, Rsc Advance, 4(1), 420(2014)
3 M. H. H.Jumali, F. K. M. Alosfur, S. Radiman, N. J. Ridha, M. A. Yarmo, A. A. Umar, Rapid synthesis of TiO2/MWCNTs nanocatalyst with enhanced photocatalytic activity using modified microwave technique, Materials Science in Semiconductor Processing, 25, 207(2014)
4 J. F. Niu, B. H. Yao, Y. Q. Chen, C. Peng, X. J. Yu, J. Zhang, G. H. Bai, Enhanced photocatalytic activity of nitrogen doped TiO2 photocatalysts sensitized by metallo Co, Ni-porphyrins, Applied Surface Science, 271, 39(2013)
5 Z. L. Ma, G. F. Huang, D. S. Xu, M. G. Xia, W. Q. Huang, Y. Tian, Coupling effect of La doping and porphyrin sensitization on photocatalytic activity of nanocrystalline TiO2, Materials Letters, 108, 37(2013)
6 S. Afzal, W. A. Daoud, S. J. Langford, Photostable Self-Cleaning Cotton by a Copper(II) Porphyrin/TiO2 Visible-Light Photocatalytic System, ACS Applied Materials & Interface, 5(11), 4753(2013)
7 LUO Kai, Synthesis and spectral properties research of schiff base porphyrin, Master thesis (Chang Sha, Hunan University, 2008)
7 (罗凯, 席夫碱卟啉的合成及其光谱性能的研究, 硕士学位论文(长沙, 湖南大学, 2008))
8 LUO Guotian, ZHENG Shengwei, XU Qingbing, Synthesis, Optical and Thermal Properties of Novel Schiff BaseComplexes Containing Porphyrin Copper and Zinc, Chemical Joural of Chinese University, 29(7), 1307(2008)
8 (罗国添, 郑生伟, 徐庆兵, 新型卟啉席夫碱铜/锌配合物的合成与光热性能, 高等学校化学学报, 29(7), 1307(2008))
9 CAO Tingting, LUO Guangfu, ZOU Cai, ZHAO Xiaorong, LI Ruiping, HUANG Yingping, Degradation of Toxic Organic Pollutants by Iron(III) Schiff-base/TiO2 Complex Under Visible Irradiation , Acta Chimica Sinica, 69(12), 1438(2011)
9 (曹婷婷, 罗光富, 邹彩琼, 赵小蓉, 李瑞萍, 黄应平, 席夫碱铁-TiO2复合物光催化降解有毒有机污染物, 化学学报, 69(12), 1438(2011))
10 YANG Xiaoyan, Study on synthesis and character of Tetra-(4-carboxylphenyl) porphyrinon, Master thesis (Dalian, Dailian Polytechnic University, 2005)
10 (杨晓燕, 四-(对-羧基)苯基卟啉配位聚合物的合成及性能研究, 硕士学位论文(大连, 大连轻工业学院, 2005))
11 NIU Jinfen, YAO Binghua, LIU Tingting, Preparation and photocatalytic activity study of meso-tetrakis( 4-Hydroxylphenyl) porphyrin( MTHPP) /TiO2composites, Journal of Molecular Catalysis (China), 25(5), 435(2011)
11 (钮金芬, 姚秉华, 刘婷婷, 四羟基苯基金属卟啉(MTHPP)/TiO2的合成及其光催化活性的研究, 分子催化, 25(5), 435(2011))
12 C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu, Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group, Ceramics International, 40(5), 7093(2014)
13 HUANG Ruobin, LI Song, HU Jianshe, QING Gaowu, Study on photocatalytic degradation of methyl orange, methylene blue and rhodanmine B, Journal of Materials and Metallurgy, 11(4): 303(2012)
13 (黄若宾, 李松, 胡建设, 秦高梧, 纳米Fe2O3对甲基橙, 亚甲基蓝和罗丹明B的光催化降解研究, 材料与冶金学报, 11(4), 303(2012))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!