Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 145-151    DOI: 10.11901/1005.3093.2016.172
Orginal Article Current Issue | Archive | Adv Search |
Simultaneously Toughening and Reinforcing Modification of Benzoxazineresin with Hyperbranched Epoxy
Qifeng JIN1,2(),Dongyue JIANG2,Lina TONG2,Liyuan TAN2
1 Key Laboratory of New Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007, China
2 School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
Cite this article: 

Qifeng JIN,Dongyue JIANG,Lina TONG,Liyuan TAN. Simultaneously Toughening and Reinforcing Modification of Benzoxazineresin with Hyperbranched Epoxy. Chinese Journal of Materials Research, 2017, 31(2): 145-151.

Download:  HTML  PDF(2768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fullycompatibleblend cured resins DDM/AHEP were prepared by incorporating different among of aliphaticand epoxide-functional hyperbranched polymer (AHEP) into an aromatic-diamine typebenzoxazine(DDM) network without cure-induced phase separation. Then their structure and thermo-mechanical property were investigated by means of FTIR,DSC and DMA. The results show that the Young's modulus and impact toughness of DDM could be simultaneously enhanced by the incorporating AHEP.Flexural strength and impact strength of the cured DDM/AHEP blend approach a maximum for5% incorporationof AHEP, representing an increase of over 11.5% and 167% respectively in comparison to that of the original DDM. The fracture surface morphology of the cured blend has the characteristic of in-situ toughness enhancement.

Key words:  organic polymer materials      hyperbranched epoxy      polybenzoxazine      curing reaction      modification     
Received:  31 March 2016     
Fund: Supported by Doctoral Foundation of Liaoning Province (No.20111066)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.172     OR     https://www.cjmr.org/EN/Y2017/V31/I2/145

Fig.1  FTIR spectraof DDM, PDDMandcured DDM/AHEP-10 blend
Fig.2  Copolymerization of DDM and AHEP
Fig.3  DSC curves of DDM and DDM/AHEP-10 blend
Method E (kJ/mol) E?(kJ/mol) A(min-1) n
DDM “Kissinger” 83.81
“Ozawa” 91.04 88.43 5.260×109 0.9100
DDM/AHEP-10 “Kissinger” 70.68
“Ozawa” 78.26 74.47 2.250×107 0.6270
Table 1  △EA and n of DDM and DDM/AHEP-10 blend
AHEP, mass fraction (%) Totala
(J/g)
Residualb
(J/g)
Degree of cure
(%)
0 351.38 41.81 88.1
5 290.67 39.53 86.4
10 313.79 45.44 85.5
15 255.93 40.45 84.2
Table2  Heat of reaction and the curing degree of DDM/AHEP blends
AHEP/%,
mass fraction
Tg/oC T/oC Er/MPa Ve/molm-3,×103
0 209 239 40.19 3.1
5 204 234 29.37 2.3
10 200 230 35.92 2.9
15 197 227 30.01 2.4
Table3  Crosslink density of cured DDM/AHEP blends
Fig.4  Tanδ as a function of AHEP content in cured DDM/AHEP blends
Fig.5  Flexural strength of cured DDM/AHEP blends as a function of AHEP content
Fig.6  Flexural modulus of cured DDM/AHEP blends as a function of AHEP content
Fig.7  Impact strength of cured DDM/AHEP blends as a function of AHEP content
Fig.8  SEM images of fracture surfaces from impact specimens (a) cured DDM sample, (b) cured DDM/AHEP-10 blend
[1] Zeng M, Wang J, Li R R, et al.The curing behavior and thermal property of graphene oxide/benzoxazinenanocomposites[J]. Polymer, 2013, 54: 3107
[2] Zhang K, Ishida H.Thermally stable polybenzoxazines via ortho-norbornene functional benzoxazine monomers: unique advantages in monomer synthesis, processing and polymer properties[J]. Polymer, 2015, 66: 240
[3] Nash N H, Ray D, Young T M, et al.The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of carbon/benzoxazine composites with a thermoplastic toughening interlayer[J]. Comp. Part A: Appl. Sci. Manuf., 2015, 76: 135
[4] Xiang H, Ling H, Gu Y.Toughening modification of benzoxazine with CTBN rubber[J]. China Synth. Resin Plast., 2010, 27(6): 21
[4] (向海, 凌红, 顾宜. 羧基丁腈橡胶增韧改性苯并噁嗪树脂[J]. 合成树脂及塑料, 2010, 27(6): 21)
[5] Rimdusit S, Kunopast P, DueramaeI.Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin[J].Polym. Eng. Sci., 2011, 51: 1797
[6] Jin L, Agag T, Ishida H.Bis(benzoxazine-maleimide)s as a novel class of high performance resin: synthesis and properties[J]. Eur. Polym. J., 2010, 46: 354
[7] Wu G L, Kou K C, Zhuo L H, et al.Preparation and characterization of novel dicyanate/benzoxazine/bismaleimide copolymer[J]. Thermochim. Acta, 2013, 559: 86
[8] Saz-Orozco B D, Ray D, Kervennic A, et al. Toughening of carbon fibre/polybenzoxazine composites by incorporating polyethersulfone into the interlaminar region[J]. Mater. Design, 2016, 93: 297
[9] De B, Karak N.Novel high performance tough hyperbranched epoxy by an A2+B3polycondensation reaction[J]. J. Mater. Chem. A, 2013, 1: 348
[10] Si J J, Xu P J, He W, et al.Bis-benzoxazine resins with high char yield and toughness modified by hyperbranched poly (resorcinol borate)[J]. Comp. Part A: Appl. Sci. Manuf., 2012, 43: 2249
[11] Li S F, Wang H L, Tao M.Synthesis and characterization of a new reactive hyperbranched polyphosphate ester, and its modification on benzoxazine-bisoxazoline resins[J]. Des. Monomers Polym., 2014, 17: 693
[12] Zhang J H, Liu T T, Liu C H, et al.Benzoxazine toughened and reinforced by hyperbranched epoxy resin [A]. Academic of National Polymer Materials Science and Engineering Conference (part II)[C]. Beijing: Chinese Chemical Society, 2014: 553
[12] (张俊珩, 刘婷婷, 刘春海等. 超支化环氧树脂增韧增强改性苯并噁嗪树脂的研究[A]. 2014年全国高分子材料科学与工程研讨会学术论文集(下册)[C]. 北京: 中国化学会, 2014: 553)
[13] Jin Q F, Misasi J M, Wiggins J S, et al.Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier[J]. Polymer, 2015, 73: 174
[14] Kumar S R, Dhanasekaran J, Mohan S K.Epoxybenzoxazine based ternary systems of improved thermo-mechanical behavior for structural composite applications[J]. RSC Adv., 2015, 5: 3709
[15] Fu Z E, Xu K, Liu X, et al.Synthesis, characterization and thermal properties of fluorene-based benzoxazines[J]. Polym. Mater. Sci. Eng., 2012, 28(2): 5
[15] (付子恩, 许凯, 刘新等. 芴基苯并噁嗪的合成表征及热性能[J]. 高分子材料科学与工程, 2012, 28(2): 5)
[16] Zhao R X, Zhang D Z, Lu S P, et al.Synthesis and characterization of trifunctional epoxy resin[J]. Thermosetting Resin, 2013, 28(5): 6
[16] (赵仁翔, 张德震, 陆士平等. 三官能团环氧树脂的合成及表征[J]. 热固性树脂, 2013, 28(5): 6)
[17] Li Y L, Tang B M, Liang Z Q, et al.Study on the curing process of benzoxazine-epoxy copolymerization[J]. Thermosetting Resin, 2008, 23(2): 15
[17] (李艳亮, 唐邦铭, 梁子青等. 苯并噁嗪/环氧树脂共聚固化过程研究[J]. 热固性树脂, 2008, 23(2): 15)
[18] Li Y M, Fang X, Ren T T, et al.Study on the performance of butyl amine-fluorenylbenzoxazine[J]. Chem. Adhes., 2013, 35(2): 10
[18] (黎亚明, 方雪, 任甜甜等. 丁胺-芴基苯并噁嗪/环氧共混树脂的性能研究[J]. 化学与黏合, 2013, 35(2): 10)
[19] Liu M Q, Liu J J, Zou W.Research progress of benzoxazine and polybenzoxazine in the preparation of C/C composites[J]. Mater. Rev., 2012, 26(3): 88
[19] (刘明强, 刘建军, 邹武. 苯并噁嗪及其在制备C/C复合材料领域的研究进展[J]. 材料导报, 2012, 26(3): 88)
[20] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[21] Ozawa T.Kinetic analysis of derivative curves in thermal analysis[J]. J. Therm. Anal., 1970, 2: 301
[22] Liu X D, Cheng J, Lin X, et al.Curing kinetics of epoxy resins/amine system and epoxy/episulfide resin/amine system[J]. CIESC J., 2013, 64: 4046
[22] (刘晓东, 程珏, 林欣等. 环氧树脂和环氧/环硫树脂与胺的固化反应动力学[J]. 化工学报, 2013, 64: 4046)
[23] Holroyd M, Ilie N.Effects of exposure time and exposure distance on the degree of cure in light-activated pit and fissure sealants[J]. J. Dent., 2013, 41: 1222
[24] Emrick T, Chang H T, Fréchet J M J. Thepreparation of hyperbranchedaromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2+B3monomers[J]. J. Polym. Sci., Part A: Polym. Chem., 2000, 38: 4850
[25] LaiarinandrasanaL, Fu Y, Halary J L. Toughness improvement of epoxy networks by nanophase-separating antiplasticizers[J]. J. Appl. Polym. Sci., 2012, 123: 3437
[26] Tu J W, Tucker S J, Christensen S, et al.Phenylenering motions in isomeric glassy epoxy networks and their contributions to thermaland mechanical properties[J]. Macromolecules, 2015, 48: 1748
[27] MarksM J, Snelgrove R V.Effect of conversion on the structure-property relationships of amine-cured epoxy thermosets[J]. ACS Appl. Mater. Interfaces, 2009, 1: 921
[28] Tomuta A, Ferrando F, Serraà, etal.New aromatic-aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets[J]. React. Funct. Polym., 2012, 72: 556
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[3] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[6] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] ZENG Qiang, WANG Rongchao, LIU Qi, PENG Huanan, CHEN Ping. Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide[J]. 材料研究学报, 2022, 36(12): 881-886.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[11] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] CAI Yao, WU Hongmei, LIU Wu, LI Duan, FAN Shiyi, WANG Yangyang. Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil[J]. 材料研究学报, 2022, 36(1): 73-80.
[13] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[14] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[15] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
No Suggested Reading articles found!