Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 881-886    DOI: 10.11901/1005.3093.2021.605
ARTICLES Current Issue | Archive | Adv Search |
Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide
ZENG Qiang1, WANG Rongchao1, LIU Qi1, PENG Huanan1, CHEN Ping2()
1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

ZENG Qiang, WANG Rongchao, LIU Qi, PENG Huanan, CHEN Ping. Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide. Chinese Journal of Materials Research, 2022, 36(12): 881-886.

Download:  HTML  PDF(2729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The magnetic functionalized rGO/Fe3O4 was prepared by hydrothermal method with graphene oxide and ferric chloride as raw materials, and subsequently rGO/Fe3O4 particles were blend in epoxy resin to prepared composite rGO/Fe3O4/epoxy resin. The results show that the impact strength of rGO/Fe3O4/epoxy resin composites reaches 27 kJ/m2 when the addition amount of rGO/Fe3O4 is 30%, which is 58.8% higher than that of the plain epoxy resin. In addition, the absorption performance of epoxy resin composite is significantly enhanced after the addition of rGO/Fe3O4. When the addition of rGO/Fe3O4 is 20%, the reflection loss of the rGO/Fe3O4/epoxy resin composite is less than -10 dB in the frequency range of 7.7~12.3 GHz. The effective absorption bandwidth (reflection loss<-10 dB) is up to 4.6 GHz, which covering the whole X-band. With the increase of graphene content, the position of the minimum reflection loss of rGO/Fe3O4/epoxy resin composites moves towards low-frequencies. It follows that by controlling the relative content of rGO and Fe3O4, the absorbing performance of rGO/Fe3O4/epoxy resin composites can be adjusted to the meet the requirements for materials of desired absorbing performance.

Key words:  composite      reduced graphene oxide      ferric oxide      modification      electromagnetic absorption properties     
Received:  28 October 2021     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(62065016);Department of Education Science and Technology Research Project of Jiangxi Province(GJJ180886);School-level Self-selected Project of Shangrao Normal University(201904);Innovation and Entrepreneurship Training Program for College Students of Shangrao Normal University(2019-CX-20);Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education(KF2004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.605     OR     https://www.cjmr.org/EN/Y2022/V36/I12/881

Fig.1  XRD patterns of GO and rGO/ Fe3O4
Fig.2  XPS Fe2p spectrum of S30 samples
Fig.3  SEM images rGO/Fe3O4
Fig.4  Impact strength of rGO/Fe3O4/ epoxy resin composites
Fig.5  Reflectance value with different S30 content in epoxy resin
S30 content in epoxy resinRLmin/dB

Frequency range/GHz

(RL≤-10 dB)

The bandwidth /GHz

(RL≤-10 dB)

0%-1.4--
10%-22.58.1-12.34.2
20%-28.47.7-12.34.6
30%-31.77.1-11.54.4
40%-25.57.2-10.93.7
Table 1  Electromagnetic absorption performance with different S30 content in epoxy resin
Fig.6  Reflectance values of epoxy resins composite materials which added S0, S10, S30, S50 and S70
SamplesThe ratio of Fe to rGORLmin/dBFrequency/GHzFrequency range /GHz(RL≤-10 dB)The bandwidth /GHz(RL≤-10 dB)
S056 : 0-7.910.6--
S1056 : 10-22.110.358.7~12.53.8
S3056 : 30-31.79.27.1~11.54.4
S5056 : 50-17.78.16.5~10.94.4
S7056 : 70-6.74.0--
Table 2  The electromagnetic absorption performance of epoxy resins composite materials which added S0, S10, S30, S50 and S70
1 Zhou W Y, Zhang F, Wang X, et al. Modification of epoxy resin with epoxidized hydroxyl terminated polybutadiene liquid rubber [J]. Modern Plastics Processing and Applications, 2020, 32(5): 4
周文英, 张 帆, 汪 旭 等. EHTPB液体橡胶改性环氧树脂研究 [J]. 现代塑料加工应用, 2020, 32(5): 4
2 Jiang T, Guan H L, Chen X R, et al. Effects of liquid polysulfide rubber on dielectric properties of epoxy resin [J]. Journal of Xi'An Jiaotong University 2020, 54(2): 86
江 铁, 关弘路, 陈向荣 等. 液态聚硫橡胶对环氧树脂介电性能的影响 [J]. 西安交通大学学报, 2020, 54(2): 86
3 Zhao Y L, Huang R J, Wu Z X, et al. Effect of free volume on cryogenic mechanical properties of epoxy resin reinforced by hyperbranched polymers [J]. Mater. Des., 2021, 202: 109565
doi: 10.1016/j.matdes.2021.109565
4 Yang R, Cao H W, Zhang P L, et al. Highly toughened and heat-resistant poly(lactic acid) with balanced strength using an unsaturated liquid crystalline polyester via dynamic vulcanization [J]. ACS Appl. Poly. Mater., 2021, 3(1): 299
5 Leena K, Temina M R, Dona M, et al. Novel epoxy resin adhesives toughened by functionalized poly (ether ether ketone)s [J]. Inter. J. Adhe. Adhe., 2021, 106: 102816
6 Ke J X, Jing X, Wang H, et al. Effects of hydrolyzed cyclic carbonate toughener on properties of epoxy resin [J]. Polyurethane Industry, 2021, 36 (4): 20
柯杰曦, 景 欣, 王洪 等. 水解环状碳酸酯增韧剂对环氧树脂性能的影响[J]. 聚氨酯工业, 2021, 36 (4): 20
7 Katti P, Verma K K, Kumar S, et al. Tuning the interface in epoxy-based composites and laminates through epoxy grafted graphene oxide enhances mechanical properties [J]. Nanoscale Adv., 2021, 3(23): 6739
doi: 10.1039/D1NA00437A
8 Luo X, Pu X L, Ding X M, et al. Low loading of tannic acid-functionalized WS30 nanosheets for robust epoxy nanocomposites [J]. ACS Appl. Nano Mater., 2021, 4(10): 10419
doi: 10.1021/acsanm.1c01938
9 Chen Q Y, Sukmanee T, Rong L H, et al. A dual approach in direct ink writing of thermally cured shape memory rubber toughened epoxy [J]. ACS Appl. Poly. Mater., 2020, 2(12): 5492
10 Su W F, Han X C, Gong J, et al. Toughening epoxy asphalt binder using core-shell rubber nanoparticles [J]. Const. Build. Mater., 2020, 258: 119716
doi: 10.1016/j.conbuildmat.2020.119716
11 Yang J Y, Wang H X, Liu X H, et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins [J]. Comp. Sci. Tech., 2021, 212: 108884
doi: 10.1016/j.compscitech.2021.108884
12 Yuan Z H, Niu Y P, Wang X W, et al. Study on mechanical property of SiO2-ESBS/EP [J]. New Chemical Materials, 2021, 49(8): 82
袁智慧, 牛永平, 汪小伟 等. SiO2-ESBS/环氧树脂复合材料的力学性能研究[J]. 化工新型材料, 2021, 49(8): 82
13 Pang B, Jia Y T, Pang S D, et al. Research on the toughening mechanism of modified nano-silica and silane molecular cages in the multi-scale microfracture of cement-epoxy composite [J]. Ceme. Conc. Comp., 2021, 119: 104027
14 Rui W J. Preparation and performance of liquid crystal polyurethane epoxy resin composites [J]. Chemical Engineering Design Communications, 2020, 46(11): 35
芮文娟. 液晶聚氨酯/环氧树脂复合材料的制备与性能 [J]. 化工设计通讯, 2020, 46(11): 35
15 Xu S Q, Cai J, Qin X F, et al. Performance of resin system of E-51 toughened by liquid-crystalline epoxy resin [J]. Packaging Engineering, 2016, 37(5): 99
徐淑权, 蔡 建, 秦旭锋 等. 液晶环氧树脂增韧改性E-51树脂体系性能研究 [J]. 包装工程, 2016, 37(5): 99
16 Le H S, Bui T S, Nguyen N T, et al. Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly (ester amide) [J]. React. Fun. Poly., 2012, 72(8): 542
17 Derakhshani M, Taheri-Nassaj E, Jazirehpour M, et al. Microwave absorption properties of porous NiZn ferrite powders synthesized by solution combustion method: Effect of fuel contents [J]. J. Alloy. Compd., 2021, 886: 161195
doi: 10.1016/j.jallcom.2021.161195
18 Peng K S, Wu Y H, Liu C Y, et al. Achievement of superior microwave absorption performance and ultra-wide regulation frequency range in Fe-Co-Nd via tuning the phase constitution and crystallinity [J]. J. Magn. Magn. Mater., 2020, 502: 166561
doi: 10.1016/j.jmmm.2020.166561
19 AshraffAli K S, Ravikumar M M, Mohammed J, et al. Investigation of Ku band microwave absorption of three-layer BaFe12O19, carbon-fiber@Fe3O4, and graphene@BaFe12O19@Fe3O4 composite [J]. J. Alloy. Compd., 2021, 884: 161045
doi: 10.1016/j.jallcom.2021.161045
20 Jiang X Y, Wan W H, Wang B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals [J]. Appl. Surf. Sci., 2022, 572: 151320
doi: 10.1016/j.apsusc.2021.151320
21 Yang W T, Yang X S, Hu J K, et al. Mushroom cap-shaped porous carbon particles with excellent microwave absorption properties [J]. Appl. Surf. Sci., 2021, 564: 150437
doi: 10.1016/j.apsusc.2021.150437
22 Tian Y, Estevez D, Wei H J, et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption [J]. Chem. Eng. J., 2021, 421: 129781
doi: 10.1016/j.cej.2021.129781
23 Logesh G, Sabu U, Srishilan C, et al. Tunable microwave absorption performance of carbon fiber-reinforced reaction bonded silicon nitride composites [J]. Ceram. Inter., 2021, 47(16): 22540
doi: 10.1016/j.ceramint.2021.04.265
24 Li Z, Wang W L, Zhang M, et al. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28
李 哲, 王文龙, 张 梦 等. 碳纳米管材料低频电磁参数及吸波产热特性 [J]. 化工学报, 2019, 70(S1): 28
25 Pan K W, Leng T, Song J, et al. Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption [J]. Carbon, 2020, 160: 307
doi: 10.1016/j.carbon.2019.12.062
26 Tao J Q, Xu L L, Wan L, et al. Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption [J]. Nanoscale, 2021, 13: 12896
doi: 10.1039/d1nr03450b pmid: 34477773
27 Zeng Q, Chen P, Yu Q, et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties [J]. Sci. Rep., 2017, 7: 8388
doi: 10.1038/s41598-017-08293-3 pmid: 28814735
28 Thi Q V, Lim S, Jang E, et al. Silica particles wrapped with poly (aniline-co-pyrrole) and reduced graphene oxide for advanced microwave absorption [J]. Mater. Chem. Phys., 2020, 244: 122691
doi: 10.1016/j.matchemphys.2020.122691
29 Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem. C, 2016, 4(44): 10518
doi: 10.1039/C6TC03780A
30 Liu P B, Gao S, Wang Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials [J]. Chem. Eng. J., 2020, 381: 122653
doi: 10.1016/j.cej.2019.122653
31 Gong P, Hao L, Li Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption [J]. Carbon, 2021, 185: 272
doi: 10.1016/j.carbon.2021.09.014
32 Rojas J A, Ribeiro B, Rezende M C. Influence of serrated edge and rectangular strips of MWCNT bucky paper on the electromagnetic properties of glass fiber/epoxy resin composites [J]. Carbon, 2020, 160: 317
doi: 10.1016/j.carbon.2020.01.036
33 He H, Gao C. Supraparamagnetic, Conductive, and Processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2010, 2(11): 3201
doi: 10.1021/am100673g
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!