Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 136-144    DOI: 10.11901/1005.3093.2016.309
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Performance of Nanocomposites HDPE Toughened-reinforced Synergetically with Functionalized Graphene and Carbon Nano-tubes
Jun BIAN1(),Gang WANG1,Xing ZHOU1,Hailan LIN1,Zhengjun WANG1,Wenqiang XIAO1,Daiqiang CHEN2
1 College of Materials Science and Engineering, Xi-Hua University, Chengdu, Sichuan 610039, China
2 College of Polymer Science and Engineering, Chengdu, Sichuan 610065, China
Cite this article: 

Jun BIAN,Gang WANG,Xing ZHOU,Hailan LIN,Zhengjun WANG,Wenqiang XIAO,Daiqiang CHEN. Preparation and Performance of Nanocomposites HDPE Toughened-reinforced Synergetically with Functionalized Graphene and Carbon Nano-tubes. Chinese Journal of Materials Research, 2017, 31(2): 136-144.

Download:  HTML  PDF(2570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hybrid materials LGC were prepared with the L-aspartic acid connected graphene oxide and the acidified MWCNT (WMCNT-COOH) as raw materials. Then nanocomposites of LGC/HDPE-g-MAH with different amount of LGC were prepared by melt blending method with maleic anhydride grafted high density polyethylene (HDPE-g-MAH) as raw material and LGC as nano-fillers. The LGC hybrids and LGC/HDPE-g-MAH nanocomposites were characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectrum (Raman), X-ray diffraction (XRD), Scanning electron microscope (SEM), Differential scanning calorimetric analysis (DSC), Thermogravimetric analysis (TGA), Dynamic mechanical analysis (DMA) and mechanical properties characterizations. Results show that L-aspartic linked effectively GO and WMCNT-COOH, while the LGC formed via an amide bond. Functional groups (amino or carboxyl group, etc.) in LGC may interact with the carboxyl groups of polymer matrix, which improved the interface between the matrix and the filler; the changes of dissipation factor verified that strong interactions exist between LGC and HDPE-g-MAH matrix chains; therewith the crystallization temperature, melting temperature and thermal stability of nanocomposites were enhanced; while with the increasing amount of LGC, the tensile strength and impact strength of the nanocomposites increased first and then decreased, by addition of 0.5%and 0.75%(mass fraction) LGC, the impact strength and tensile strength of the nanocomposites were enhanced by 95.9% and 62.4% respectively in comparison , with the blank HDPE-g-MAH.

Key words:  nanocomposite      HDPE-g-MAH      graphene      carbon nano-tubes      property     
Received:  03 June 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.309     OR     https://www.cjmr.org/EN/Y2017/V31/I2/136

Fig.1  FTIR spectra of GO (a), GO-EDA (b), LGC (c) and MWCNT-COOH (d)
Fig.2  Fabrication process and reaction mechanism of LGC/HDPE-g-MAH nanocomposites
Fig.3  Raman spectra ofMWCNTs-COOH (a), LGC(b), GO (c) and GO-EDA(d)
Fig.4  XRD patterns of graphite, L-aspartic, MWCNT-COOH, GO-EDA, GO and LGC
Fig.5  Relationship between mechanical properties of LGC-HDPE-g-MAH nanocomposites and LGC contents
Fig.6  DMA curves of LGC-HDPE-g-MAH nanocomposites with different LGC hybrid contents (a) Storage modulus; (b) Loss modulus and (c) dissipation factor (Tanσ)
Fig.7  Impact cross section SEM images of LGC/HDPE-g-MAH nanocomposites with different LGC contents (a) pure HDPE-g-MAH, (b) 0.25%, (c) 0.75%, (d) 1%
Fig.8  The TGA-DTG curves of LGC/HDPE-g-MAH nanocomposites with different LGC hybrid contents (a) TGA; (b) DTG
Fig.9  DSC curves for LGC/HDPE-g-MAH composites (a) melting curves; (b) cooling curves
[1] Lu H J, Ma X Y, Zhu G M, et al.Limited-oxygen irradiation crosslinking modification of HDPE[J]. Polym. Mater. Sci. Eng., 2003, 19(4): 204
[1] (鹿海军, 马晓燕, 朱光明等. 高密度聚乙烯限氧辐射交联改性[J]. 高分子材料科学与工程, 2003, 19(4): 204)
[2] Liu S P, Zhang M, Hu H Z, et al.Development in modification of polyethylene[J]. J. Wuhan Inst. Technol., 2010, 32(3): 31
[2] (刘生鹏, 张苗, 胡昊泽等. 聚乙烯改性研究进展[J]. 武汉工程大学学报, 2010, 32(3): 31)
[3] Yang X M, Wang D, Tian Y.Performance of nano-MgO/high density polyethylene composites[J]. Acta Mater. Compos. Sin., 2016, 33: 234
[3] (杨晓明, 王铎, 田耘. 纳米MgO/高密度聚乙烯复合材料的性能[J]. 复合材料学报, 2016, 33: 234)
[4] Enoki T, Takai K.Unconventional electronic and magnetic functions of nanographene-based host-guest systems[J]. Dalton Trans., 2008, (29): 3773
[5] Berger C, Song Z M, Li X B, et al.Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191
[6] Sutter P W, Flege J I, Sutter E A.Epitaxial graphene on ruthenium[J]. Nat. Mater., 2008, 7: 406
[7] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282
[8] Sengupta R, Bhattacharya M, Bandyopadhyay S, et al.A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Prog. Polym. Sci., 2011, 36: 638
[9] Galpaya D, Wang M C, Liu M N, et al.Recent advances in fabrication and characterization of graphene-polymer nanocomposites[J]. Graphene, 2012, 1: 30
[10] El Achaby M, Qaiss A.Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes[J]. Mater. Des., 2013, 44: 81
[11] Jiang X, Drzal L T.Multifunctional high-density polyethylene nanocomposites produced by incorporation of exfoliated graphene nanoplatelets 2: Crystallization, thermal and electrical properties[J]. Polym. Comp., 2012, 33: 636
[12] Xiang D, Harkin-Jones E, Linton D, et al.Structure, mechanical, and electrical properties of high-density polyethylene/multi-walled carbon nanotube composites processed by compression molding and blown film extrusion[J]. J. Appl. Polym. Sci., 2015, 132: 42665
[13] Yang F, Bian J, He F X, et al.Preparation and properties of PP/PP-g-MAH/GS-EDA nanocomposites[J]. Eng. Plast. Appl., 2014, 42(9): 10
[13] (杨峰, 卞军, 何飞雄等. PP/PP-g-MAH/GS-EDA纳米复合材料的制备及性能[J]. 工程塑料应用, 2014, 42(9): 10)
[14] He F X, Bian J, Lin H L, et al.Preparation and characterization of functionalized nano-graphene sheet/PP-PP-g-MAH composites[J]. Acta Mater. Compos. Sin., 2015, 32: 47
[14] (何飞雄, 卞军, 蔺海兰等. 功能化纳米石墨烯片/PP-PP-g-MAH复合材料的制备与表征[J]. 复合材料学报, 2015, 32: 47)
[15] Li J M, Wang G, Chen L X, et al.Preparation and mechanical properties of polystyrene nanocomposites modified collaboratively by functionalized graphene sheets and carbon nanotubes[J]. China Plast. Indus., 2015, 43(4): 74
[15] (李佳镁, 王刚, 陈立兴等. 功能化石墨烯片/碳纳米管协同改性聚苯乙烯纳米复合材料的制备和力学性能研究[J]. 塑料工业, 2015, 43(4): 74)
[16] Yoo E J, Kim J, Hosono E, et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett., 2008, 8: 2277
[17] Fan Z J, Yan J, Zhi L J, et al.A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv. Mater., 2010, 22: 3723
[18] Yu D S, Dai L M.Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. J. Phys. Chem. Lett., 2010, 1: 467
[19] Worsley M A, Pauzauskie P J, Olson T Y, et al.Synthesis of graphene aerogel with high electrical conductivity[J]. J. Am. Chem. Soc., 2010, 132: 14067
[20] Guo W H, Liu C, Sun X M, et al.Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity[J]. J. Mate. Chem., 2012, 22: 903
[21] Zhao D M, Li Z W, Liu L D, et al.Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chim. Sin., 2014, 72: 185
[21] (赵冬梅, 李振伟, 刘领弟等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72: 185)
[22] Wang G, Lin H L, He F X, et al.Research progress on synergistic modification of polymer nanocomposites by graphene and carbon nanotubes[J]. China Plast. Indus., 2014, 42(5): 7
[22] (王刚, 蔺海兰, 何飞雄等. 石墨烯/碳纳米管协同改性聚合物纳米复合材料的研究进展[J]. 塑料工业, 2014, 42(5): 7)
[23] Varshney V, Patnaik S S, Roy A K, et al.Modeling of thermal transport in pillared-graphene architectures[J]. ACS Nano, 2010, 4: 1153
[24] Tung V C, Chen L M, Allen M J, et al.Low-temperature solution processing of grapheme-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano Lett., 2009, 9: 1949
[25] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339
[26] Saleh T A, Agarwal S, Gupta V K.Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate[J]. Appl. Catal., 2011, 106B: 46
[27] Saleh T A.The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4[J]. Appl. Surf. Sci., 2011, 257: 7746
[28] Shin H J, Kim S M, Yoon S M, et al.Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and-withdrawing groups[J]. J. Am. Chem. Soc., 2008, 130: 2062
[29] Voggu R, Rout C S, Franklin A D, et al.Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer[J]. J. Phys. Chem., 2008, 112C: 13053
[30] Shen J L, Yang C Y, Li X W, et al.High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes[J]. ACS Appl. Mater. Interfaces, 2013, 5: 8467
[31] Patole A S, Patole S P, Jung S Y, et al.Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization[J]. Eur. Polym. J., 2012, 48: 252
[32] He M J, Chen W X, Dong X X.Polymer Physics (revised edition)[M]. Shanghai: Fudan University Press, 1990
[32] (何曼君, 陈维孝, 董西侠. 高分子物理(修订版)[M]. 上海: 复旦大学出版社, 1990)
[33] Yu A P, Ramesh P, Sun X B, et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Adv. Mater., 2008, 20: 4740
[34] Zheng Z X, Wang Z H, Feng Q L, et al.Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: Processing, morphology and properties[J]. Mater. Chem. Phys., 2013, 138: 350
[35] Kashiwagi T, Grulke E, Hilding J, et al.Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites[J]. Macromol. Rapid Commun., 2002, 23: 761
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[8] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. 材料研究学报, 2023, 37(2): 152-160.
[13] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[14] WANG Chunjin, CHEN Wenge, KANG Ningning, YANG Tao. Microstructure and Properties of Graphene-regulated Functional Titanium by Laser Additive Manufacturing[J]. 材料研究学报, 2023, 37(10): 791-800.
[15] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
No Suggested Reading articles found!