Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 589-594    DOI: 10.11901/1005.3093.2016.163
Orginal Article Current Issue | Archive | Adv Search |
Isothermal Oxidation Behaviour of Ni-Cr-Co-Mo-W-Ta-Al Superalloy at 900℃ and 1000℃
LU Xudong**, WANG Fuli
Department of Weapon Launching Engineering, Shenyang Ligong University, Shenyang 110168, China
Cite this article: 

LU Xudong, WANG Fuli. Isothermal Oxidation Behaviour of Ni-Cr-Co-Mo-W-Ta-Al Superalloy at 900℃ and 1000℃. Chinese Journal of Materials Research, 2016, 30(8): 589-594.

Download:  HTML  PDF(4434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of a superalloy Ni-4.66Cr-5.87Co-7.54Mo-2.90W-4.97-Ta-6.32Al at 900℃ and 1000℃ in air has been investigated by means of TGA, XRD and SEM/EDAX. Results show that the oxidation rate in the initial stage is rapid, then with the oxidation time the oxidation weight gain tends to be smooth, but the oxidation kinetics curve for the superalloy later presents a wavy-like change and much obviously for the higher oxidation temperature. The oxide scales consist of two layers both at 900℃ and 1000℃. Of which , the outer layer is mainly composed of NiO、Ni2Cr2O4、Ni2CoO4 and CoTa2O6, while the inner layer is a thin scale of Al2O3. The continuous oxide layer of Al2O3 is formed on the alloy surface to restrain the growth of oxide scale and decrease the oxidation rate. The precipitates of internal oxide (Al2O3) and internal nitride (AlN) formed in the superalloy after exposure for 300h at 900℃ and 1000℃; the internal oxidation zone forms on the surface of the superalloy just beneath the outer layer of the oxide scale, while the internal nitridation zone forms below the internal oxidation zone; with the increasing temperature the internal oxidation zone and internal nitridation zone became thicker, simultaneity the size of internal nitride and internal oxide increases.

Key words:  metallic materials      Ni-base superalloy      isothermal oxidation      kinetics curves      internal oxidation      internal nitridation     
Received:  28 March 2016     
Fund: *Supported by Financial Support by the Education Department of Liaoning Province No L2012063 and Research Fund for the Doctoral Program of Liaoning Province No 20141088

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.163     OR     https://www.cjmr.org/EN/Y2016/V30/I8/589

Fig.1  Oxidation kinetics of superalloy oxidized for 300 h at 900℃ and 1000℃ in air
Fig.2  XRD analysis of Ni-base superalloy oxidized for 300 h at 900℃ and 1000℃
Fig.3  Surface morphologies of Ni-base superalloy oxidized for 300 h at (a) 900℃ and (b) 1000℃
Fig.4  Cross sectional morphologies of Ni-based superalloy after oxidation for 300 h at (a) 900℃ and (b) 1000℃
Fig.5  Cross sectional morphology (a) and (b~i) content distributions of the specimen after oxidation at 1000℃ for 300 h
Compound 900℃ 1000℃
Al2O3 -1296 -1263
Cr2O3 -814 -789
NiO -134 -126
CoO -153 -145
Ta2O5 -1541 -1500
AlN -189 -177
CrN -27 -20
TaN -152 -144
Table 1  Gibbs free energy for the formation of related compounds (kJmol-1)
1 LU Xudong, TIAN Sugui, WANG Tao, ZHU Degang, Hot corrosion behaviour of sputtered NiCrAlY nanocrystalline coating in molten sulfate at 900℃, Transactions of Materials and Heat Treatment, 34(10), 153(2013)
(卢旭东, 田素贵, 王涛, 朱德刚, 溅射NiCrAlY纳米晶涂层在900℃的热腐蚀行为, 材料热处理学报, 34(10), 153(2013))
2 PARK Sijun, SEO Seongmoon, YOO Youngsoo, JEONG Hiwon, JANG Heejin, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science, 90, 205(2015)
doi: 10.1016/j.corsci.2014.10.025
3 J. Brennemana, J. Weib, Z. Sunb, L. Liub, G. Zoub, Y. Zhou.Oxidation behavior of GTD111 Ni-based superalloy at 900℃ in air, Corrosion Science, 100, 267(2015)
doi: 10.1016/j.corsci.2015.07.031
4 WU Mingyu, CHEN Minghui, ZHU Shenglong, WANG Fuhui, Effect of sand blasting on oxidation behavior of K38G superalloy at 1000℃, Corrodion Science, 92, 256(2015)
doi: 10.1016/j.corsci.2014.12.015
5 LI Yun, SHANG Haibo, GUO Jianting, YUAN Chao, YANG Hongcai, Isothermal oxidation behavior of a cast Ni-base superalloy K35, Acta Metallurgica Sinica, 39(7), 751(2003)
(李云, 尚海波, 郭建亭, 袁超, 杨洪才, 镍基铸造高温合金K35的高温氧化行为, 金属学报, 39(7), 751(2003))
doi: 10.3321/j.issn:0412-1961.2003.07.015
6 SUN Chaoyang, CHEN Guicai, WU Chuanbiao, Xu Wenliang, MA Tianjun, YANG Jing, High temperature oxidation behavior of typical nickelbased superalloys, Corrosion Science and Protection Technology, 26(4), 348(2014)
(孙朝阳, 陈桂才, 武传标, 徐文亮, 马天军, 杨竞, 典型耐热镍基合金抗高温氧化行为研究, 腐蚀科学与防护技术, 26(4), 348(2014))
doi: 10.11903/1002.6495.2014.132
7 PARK Sijun, SEO Seongmoon, YOO Youngsoo, Jeong HIwon, JANG Heejin, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science, 90, 312(2015)
doi: 10.1016/j.corsci.2014.10.025
8 L. Huang, X. G. Sun, H. R. Guan, Z. Q. Hu, Oxidation behaviour of the single crystal Ni-base superalloy DD32 in air at 900, 1000℃ and 1100℃, Oxidation Metals, 65(5/6), 403(2006)
doi: 10.1007/s11085-006-9029-7
9 Wallwork G.R., Hed A. Z., Some limiting factors in the use of alloys at high temperatures, Oxidation Metals, 3(2), 180(1971)
doi: 10.1007/BF00603485
10 LI Weiyin, LIU Hongfei, ZHAO Shuangqun, Oxidation behavior of a newNi-based superalloy at 950℃, Transactions of Material and Treatment, 29(30), 28(2008)
(李伟银, 刘红飞, 赵双群, 新型镍基高温合金950℃氧化行为的研究, 材料热处理学报, 29(30), 28(2008) )
11 LIANG Yingjiao, CHE Yinchang, The Handbook of Abio-compound Thermodynamics Data, (Shenyang, Northeast University Press, 1993)p. 449
(梁英教, 车荫昌, 无机热力学数据手册 (沈阳, 东北大学出版社, 1993))p. 449
12 Y. Z. Liu, X. B. Hu, S. J. Geng, Y. L. Zhu, H. Wei, X. L. Ma, Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation, Materials and Design, 80, 65(2015)
doi: 10.1016/j.matdes.2015.05.014
13 LI Meishuan, High Temperature Oxidation of Metals, the First Edition (Beijing, Metallurgy Industry Press, 2001) p.162
(李美栓, 金属的高温腐蚀, 第一版 (北京, 冶金工业出版社, 2001)) p.162
14 LIU Tao, DONG Jiashen, LI Hui, LI Zhijun, ZHOU Xingtai, LOU Langhong, Oxidation behavior of GH3535 superalloy at 700℃ and 800℃, Chinese Journal of Materials Research, 28(12), 895(2014)
(刘涛, 董加胜, 李辉, 李志军, 周兴泰, 楼琅洪, GH3535 合金在700℃和900℃的氧化行为, 材料研究学报, 28(12), 895(2014))
15 LU Xudong, TIAN Sugui, CHEN Tao, GUO Cean, LI Guangrui, Internal oxidation and internal sulfuration of Ni-base alloy with high Cr content during hot corrosion in molten sulfate, Rare Metal Materials and Engineerring, 43(1), 81(2014)
(卢旭东, 田素贵, 陈涛, 郭策安, 李光瑞, 高铬镍基合金熔融硫酸盐热腐蚀过程中内氧化和内硫化行为的研究, 稀有金属材料与工程, 43(1), 81(2014))
16 WU Mingyu, CHEN Minghui, ZHU Shenglong, WANG Fuhui, Effect of sand blasting on oxidation behavior of K38G superalloy at 1000℃, Corrosion Science, 92, 259(2015)
doi: 10.1016/j.corsci.2014.12.015
17 L. Huang, X. F. Sun, H. R. Guan, Z. Q. Hu, Oxidation behavior of the directionally solidified Ni-base superalloy DS951 in air, Oxidation Metals, 64(5/6), 303(2005)
doi: 10.1007/s11085-005-8529-1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!