Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (9): 649-654    DOI: 10.11901/1005.3093.2015.697
ARTICLES Current Issue | Archive | Adv Search |
Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering
Mingjie CAO,Ming ZHAO,Daming ZHUANG,Li GUO,Liangqi SUN Rujun OUYANG,Shilu ZHAN
Key Lab for Advanced Materials Processing Technologies, Ministry of Education, China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

Mingjie CAO,Ming ZHAO,Daming ZHUANG,Li GUO,Liangqi SUN Rujun OUYANG,Shilu ZHAN. Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering. Chinese Journal of Materials Research, 2016, 30(9): 649-654.

Download:  HTML  PDF(818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Niobium doped indium-zinc oxide (INZO) film, as a new channel layer material for thin film transistors (TFTs), was deposited on glass by co-sputtering targets of IZO and Nb2O5. The optical and electronic properties of the films were investigated by means of XRD, photo luminescence (PL) and Hall effect measurements. The PL results indicate that the density of deep sub-gap states in INZO films is lower than that of Ga doped IZO (IGZO). The Hall measurement results show that the carrier concentration of INZO can be effectively controlled by the O2 flow rates and thereby the carrier concentration of INZO can meet the requirement for TFT application as a channel layer. The Hall mobility increases with the increasing carrier concentration, which can be well explained by the percolation model. Optical analysis of Urbach energy demonstrates that the poor mobility with high carrier concentration originates from the structural disorder due to overabundant oxygen vacancies. The films deposited on the substrate at 250oC exhibit higher mobility but more or less the same degree of structural disorder in comparision with that at 30oC.

Key words:  inorganic non-metallic materials      Nb doped IZO      INZO      photo luminescence      mobility      sputtering     
Received:  12 December 2015     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.697     OR     https://www.cjmr.org/EN/Y2016/V30/I9/649

Fig.1  XRD pattern of INZO film deposited at 30℃ in Ar atmosphere
Fig.2  Photoluminescence (PL) emission spectra of IGZO film and INZO films deposited at 30℃ and 250℃
Fig.3  Carrier concentrations of INZO films deposited at various O2 flow rates
Fig.4  Hall mobilities of INZO films as a function of carrier concentration
Fig.5  The results of the optical analysis of the INZO films: (a) experimentalmeasured transmittance (T) and reflectance (R) spectra, (b) absorption spectra and fitted curves based on Urbach and Tauc models, (c) calculated values of (αhν)2 as a function of photon energy ()
Samples Substrate
temperature
O2 flow
rate/sccm
EU/meV
A Room temperature 0.25 203
B 0.50 160
C 1.00 156
D 2.00 164
E 250℃ 0 270
F 1.00 173
G 2.00 176
H 3.00 167
Table 1  The estimated Urbach Energies of INZO films fabricated at various O2 flow rates
[1] E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances, Advanced Materials, 24(22), 2945(2012)
[2] J. Kwon, D. Lee, K. Kim, Review paper: transparent amorphous oxide semiconductor thin film transistor, Electronic Materials Letters, 7(1), 1(2011)
[3] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, H. D. Kim, High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel, Applied Physics Letters, 91(35), 350511(2007)
[4] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, Toward high-performance amorphous GIZO TFTs, Journal of the Electrochemical Society, 156(3), H161(2009)
[5] Y. Kikuchi, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, H. Hosono, Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing, Thin Solid Films, 518(11), 3017(2010)
[6] H. H. Hsiao, Y. C. Chun, H. C. Chun, A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature, IEEE Electron Device Letters, 34(6), 768(2013)
[7] K. Nomura, H.Ohta, A.Takagi, T.Kamiya, M.Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432(7016), 488(2004)
[8] S. Hong, S. Lee, M. Mativenga, J. Jang, Reduction of negative bias and light instability of a-IGZO TFTs by dual-gate driving, IEEE Electron Device Letters, 35(1), 93(2014)
[9] B. Cho, J. Lee, H. Seo, H. Jeon, Electrical stability enhancement of the amorphous In-Ga-Zn-O thin film transistor by formation of Au nanoparticles on the back-channel surface, Applied Physics Letters, 102(21), 210810(2013)
[10] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. Bae, J. Lee, B. D. Ahn, S. Y. Park, J. Park, J. Park, H. Kwon, D. M. Kim, D. H. Kim, Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors, IEEE Electron Device Letters, 33(1), 62(2012)
[11] E. Chong, K. C. Jo, S. Y. Lee, High stability of amorphous hafnium-indium-zinc-oxide thin film transistor, Applied Physics Letters, 96(15), 152102(2010)
[12] A. Liu, Q. Zhang, G. X. Liu, F. K. Shan, J. Q. Liu, W. J. Lee, B. C. Shin, J. S. Bae, Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors, Journal of Electroceramics, 33(1-2), 31(2014)
[13] B. Y. Su, S. Y. Chu, Y. D. Juang, S. Y. Liu, Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors, Journal of Alloys and Compounds, 580, 10(2013)
[14] C. Ting, W. Li, C. Wang, H. Yong, Structural and electrical properties of the europium-doped indium zinc oxide thin film transistors, Thin Solid Films, 562, 625(2014)
[15] S. Parthiban, S. Kim, J. Kwon, Sputtered deposited carbon-indium-zinc oxide channel layers for use in thin-film transistors, IEEE Electron Device Letters, 35(10), 1028(2014)
[16] D. Son, D. Kim, S. Park, S. Sung, J. Kang, Effect of Ta addition of co-sputtered amorphous tantalum indium zinc oxide thin film transistors with bias stability, Journal of Nanoscience and Nanotechnology, 14(11), 8163(2014)
[17] W. S. Choi, H. Jo, M. S. Kwon, B. J. Jung, Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping, Current Applied Physics, 14(12), 1831(2014)
[18] H. K. Noh, K. J. Chang, B. Ryu, W. J. Lee, Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors, Physical Review B, 84(52), 520511(2011)
[19] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, S. Park, Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor, Applied Physics Letters, 98(33), 335043(2011)
[20] Y. S. Rim, W. Jeong, B. D. Ahn, H. J. Kim, Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing, Applied Physics Letters, 102(35), 350314(2013)
[21] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese Journal of Applied Physics, 45(5B), 4303(2006)
[22] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, H. Hosono, Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy, Journal of Applied Physics, 109(7), 073726(2011)
[23] N.Yamaguchi, S. Taniguchi, T. Miyajima, M. Ikeda, Optical and electrical properties of amorphous InGaZnO, Journal of Vacuum Science & Technology B, 27(3), 1746(2009)
[24] C. R. Kagan, P. Andry, WANG Jun, LIAO Yanping, Thin-Film Transistors (Beijing, Publishing House of Electronics Industry, 2008) p. 190
[24] (Kagan Cherie R., Andry Paul 编, 王军, 廖燕平译, 薄膜晶体管 (TFT) 及其在平板显示中的应用 (北京, 电子工业出版社, 2008) p. 190)
[25] T. Kamiya, K. Nomura, H. Hosono, Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors, Applied Physics Letters, 96(21), 210312(2010)
[26] F. Urbach.Thelong-wavelengthedgeofphotographicsensitivityand of theelectronicabsorptionofsolids, Physical Review, 92, 1324(1953)
[27] E. A. Davis, N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philosophical Magazine A, 22(179), 903(1970)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!