Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 292-298    DOI: 10.11901/1005.3093.2015.680
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cu and Sn Addition on Microstructure and Properties of Brazing Filler 4343 Al Alloy
ZHAO Yuanyuan, ZHANG Zhenyan, JIN Li, DONG Jie*()
National Engineering Research Center of Light Alloy Net Forming, Schools of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZHAO Yuanyuan, ZHANG Zhenyan, JIN Li, DONG Jie. Effect of Cu and Sn Addition on Microstructure and Properties of Brazing Filler 4343 Al Alloy. Chinese Journal of Materials Research, 2016, 30(4): 292-298.

Download:  HTML  PDF(6057KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 4343 Al-Si alloy is the most widely used brazing filler metal for the multi-layer aluminum clad sheets, which act as radiator fin for aluminum heat exchanger. In this paper, 0-1.0%(mass fraction) Cu or Sn was added to 4343 alloy in order to develop a new brazing filler metal with lower melting point and better collapse resistance. The results show that with the increase of Cu or Sn, the solidus and liquidus of the alloys decrease gradually, and when the Cu or Sn content is increased to 1.0%, the solidus and liquidus will be reduced by 10-15℃ respectively. With the increase of Cu ro Sn content, the Cu bearing intermetallic phases or the Sn particles increase in the cast alloy; after hot extrusion the Cu bearing intermetallic phases dissolve and Sn particles can induce the dissolution of Fe-Si bearing intermetallic phases; the tensile strength increases gradually while the elongations decrease a little. The results of trial brazing show that the addition of Cu or Sn will decrease the brazing temperature, particularly, the brazing temperature can be reduced by more than 15℃ for the filler alloys with 1.0% of Cu or Sn.

Key words:  metallic materials      4343Al alloy      alloying      melting point      brazing     
Received:  26 November 2015     
ZTFLH:  TB331  
About author:  To whom correspondence should be addressed, Tel: (021)34203052, E-mail: jiedong@sjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.680     OR     https://www.cjmr.org/EN/Y2016/V30/I4/292

New alloy Cu Si Fe Mn Mg Zn Sn Al
Cu0 0.01 7.98 0.60 0.11 0.02 0.18 - Bal.
Cu0.25(4343) 0.26 8.03 0.63 0.11 0.00 0.19 - Bal.
Cu0.6 0.65 7.96 0.61 0.11 0.00 0.18 - Bal.
Cu1.0 1.12 7.86 0.61 0.11 0.00 0.19 - Bal.
Sn0.1 0.24 7.80 0.57 0.10 0.05 0.19 0.10 Bal.
Sn0.25 0.25 7.97 0.61 0.11 0.03 0.19 0.25 Bal.
Sn0.5 0.24 8.00 0.63 0.11 0.01 0.19 0.53 Bal.
Sn1.0 0.25 7.98 0.65 0.11 0.01 0.19 1.06 Bal.
Table 1  Chemical composition of new Al alloys (mass fraction, %)
Fig.1  Microstructures and phases of Al-Si alloys with different contents of Cu or Sn, (a, b) Cu0.25 (4343), (c) Cu1.0, (d) Sn1.0
Fig.2  Solidus and liquidus temperature of Al-Si alloys with different contents of Cu or Sn
Fig.3  Effect of Cu (a) and Sn (b) contents on the mechanical properties of Al-Si alloy
Fig.4  Microstructures of the as-extruded Al-Si alloys on the longitudinal sections, (a) Cu0.25, (b) Cu1.0, (c) Sn1.0
Fig.5  SEM images and EDS analysis of the as-extruded Al-Si alloys, (a, b)Cu1.0, (c) Sn1.0
Alloy Holding temperature Brazing temperature
610℃ 605℃ 600℃ 595℃ 590℃ 585℃ 580℃
Cu0 79% 48.2% 15.7% 2% × × × >610℃
Cu0.25 (4343) 100% 79.4% 47.2% 9.2% 2% × × 610℃
Cu0.6 100% 100% 100% 87.3% 61.7% 11.5% 0% 600℃
Cu1.0 100% 100% 100% 100% 89.7% 39.6% 2.1% 595℃
Sn0.1 100% 91.4% 81.3% 0% × × × 610℃
Sn0.25 100% 100% 92% 24.5% 7% × × 605℃
Sn0.5 100% 100% 100% 100% 72.5% 29.7% 10% 595℃
Sn1.0 100% 100% 100% 100% 100% 67.4% 37.0% 590℃
Table 2  Interface bonding ratio after simulated brazing
Fig.6  Interface morphology after simulated brazing (the red line shows the bonded interface), (a) Cu0.25, 610℃, with bonding ratio of 100%; (b) Cu0.25, 605℃, with bonding ratio of 79.4%; (c) Cu1.0, 595℃, with bonding ratio of 100%; (d) Cu1.0, 590℃, with bonding ratio of 89.7%; (e) Sn1.0, 590℃, with bonding ratio of 100%; (f) Sn1.0, 585℃, with bonding ratio of 67.4%
1 W. S.Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A, A280, 37(2000)
doi: 10.1016/S0921-5093(99)00653-X
2 D. M. Turriff, S. F. Corbin, M. Kozdras, Diffusional solidification phenomena in clad aluminum automotive braze sheet, Acta Materialia, 58(4), 1332(2010)
doi: 10.1016/j.actamat.2009.10.037
3 SUN Xinglong, LING Yabiao, Research on sagging resistance of composite brazing aluminum foils, Light Alloy Fabrication Technology, 43(2), 8(2015)
(孙兴隆, 凌亚标, 复合钎焊铝箔抗下垂性能的研究进展, 轻合金加工技术, 43(2), 82015))
4 J. S. Yoon, S. H. Lee, M.S. Kim, Fabrication and brazeability of a three layer 4343/3003/4343 aluminum clad sheet by rolling, Journal of Materials Processing Technology, 111, 85(2001)
5 Jea-Sung Ryu, Mok-Soon Kim, Dongsoo Jung, Brazeability of cold rolled three layer Al-7.5Si/Al-1.2Mn-2Zn-(0.04-1.0)Si/Al-7.5Si (wt.%) clad sheets, Journal of Materials Processing Technology, 130-131, 240(2002)
6 S. H. Lee, J. S. Yoon, M. S. Kim, D. Jung, Effects of cold rolling parameters on sagging behavior for three layer Al-Si/Al-Mn(Zn)/Al-Si brazing sheets, Metals and Materials International, 8(3), 227(2002)
doi: 10.1007/BF03186089
7 Jining Qin, Suk-Bong Kang, Jae-Hyung Cho, Sagging mechanisms in the brazing of aluminum heat exchangers, Scripta Materialia, 68(12), 941(2013)
doi: 10.1016/j.scriptamat.2013.02.039
8 Feng Gao, P. Sekulic Dusan, Yiyu Qian, Xin Ma, Residual clad formation and aluminum brazed joint topology prediction, Materials Letters, 57(29), 4592(2003)
doi: 10.1016/S0167-577X(03)00366-5
9 Si Joon Noh, Mok Soon Kim, D. Jung, W. Han J., Don You Byung, Effects of Si content and cold rolling condition on brazeability of Al-Mn-Zn alloy core brazing sheet, Materials Science Forum, 486-487, 415(2005)
doi: 10.4028/www.scientific.net/MSF.486-487.415
10 Yiyou Tu, Zhen Tong, Jianqing Jiang, Effect of microstructure on diffusional solidification of 4343/3005/4343 multi-layer aluminum brazing sheet, Metallurgical and Materials Transactions A, 44(4), 1760(2012)
doi: 10.1007/s11661-012-1550-5
11 J. Lacaze, S. Tierce, C. Lafont M., Y. Thebault, N. Pébère, Study of the microstructure resulting from brazed aluminium materials used in heat exchangers, Materials Science and Engineering A, 413-414, 317(2005)
doi: 10.1016/j.msea.2005.08.187
12 S. Tierce, N. Pébère, C. Blanc, C. Casenave, G. Mankowski, H. Robidou, Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters, Corrosion Science, 49(12), 4581(2007)
doi: 10.1016/j.corsci.2007.04.013
13 YUAN Ting, TU Yiyou, ZHANG Minda, JIANG Jianqing, Effect of microstructure on sagging resistance of a three-layer aluminum brazed sheet, Transactions of Materials and Heat Treatment, 32(9), 121(2011)
(袁婷, 涂益友, 张敏达, 蒋建清, 微观组织对复合钎焊铝箔抗下垂性的影响, 材料热处理学报, 32(9), 121(2011))
14 S. Y. Chang, L. C. Tsao, Y. H. Lei, S. M. Mao, C. H. Huang, Brazing of 6061 aluminum alloy/Ti-6Al-4V using Al-Si-Cu-Ge filler metals, Journal of Materials Processing Technology, 212(1), 8(2012)
15 W. Luo, L. T. Wang, Q.M. Wang, H.L. Gong, M. Yan, A new filler metal with low contents of Cu for high strength aluminum alloy brazed joints, Materials & Design, 63, 263(2014)
doi: 10.1016/j.matdes.2014.06.033
16 Anton Gorny, Jeyakumar Manickaraj, Zhonghou Cai, Sumanth Shankar, Evolution of Fe based intermetallic phases in Al-Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate, Journal of Alloys and Compounds, 577, 103(2013)
doi: 10.1016/j.jallcom.2013.04.139
17 Tong Gao, Yuying Wu, Chong Li, Xiangfa Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al-Si-Fe-Mn alloy, Materials Letters, 110,(2013)
18 Salem Seifeddine, Sten Johansson, L. Svensson Ingvar, The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al-Si-based alloys, Materials Science and Engineering: A, 490(1-2), (2008)
19 A. M.Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment, Metallurgical and Materials Transactions A, 27A, 1785(1995)
doi: 10.1007/BF02651928
20 Z. Li, A.M. Samuel, F.H. Samuel, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in A1-Si-Cu 319 alloys, Journal of Materials Science, 38, 1203(2003)
doi: 10.1023/A:1022857703995
21 A. M. Samuel, M. Ferrante, The effect of Sn additions on the semi-solid microstructure of an Al-7Si-0.3Mg alloy, Materials Science and Engineering A, A337, 67(2002)
22 Abd El-Salam F., M. Abd El-Khalek A., H. Nada R., A. Wahab L., Y. Zahran H., Effect of Sn content on the structural and mechanical properties of Al-Si alloy, Materials Science and Engineering A, 527(4-5), 1223(2010)
23 R. H. Nada, F. Abd El-Salam, M. Abd El-Khalek A., A. Wahab L., Y. Zahran H., Effect of cyclic stress reduction on the creep parameters of Al-Si alloy with Ag and Sn additions, Materials Science and Engineering A, 552, 486(2012)
24 Guiqing Wang, Xiufang Bian, Weimin Wang, Junyan Zhang, Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys, Materials Letters, 57(24-25), 4083(2003)
25 J. H. Sokolowsk, X-C. Sun, G. Byczynsk, D. O. Northwood, D. E. Penrod, The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment, Journal of Materials Processing Technology, 53, 385(1995)
doi: 10.1016/0924-0136(95)01995-Q
26 A. M. Kliauga, E. A. Vieira, M. Ferrante, The influence of impurity level and tin addition on the ageing heat treatment of the 356 class alloy, Materials Science and Engineering A, 480(1-2), 5(2008)
doi: 10.1016/j.msea.2007.07.091
27 HU Ruiling, LI Zhiqiang, XIE Jianying, High frequency welding of vehicle heat exchanger tube of aluminium alloy, Hot Working Technology, 35(19), 15(2006)
(胡瑞玲, 李志强, 解剑英, 车辆热交换器铝合金管的高频焊接, 热加工工艺, 35(19), 15(2006))
doi: 10.3969/j.issn.1001-3814.2006.19.006
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!