Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 285-291    DOI: 10.11901/1005.3093.2015.542
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Property of Co-Doped Hydroxyl-Zr Pillared Titanate
HE Liwen1,2, SUN Dongya1,2, LIAN Jiqiong2, LIN Bizhou1,**()
1. College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
2. College of Materials Science & Engineering, Xiamen University of Technology, Xiamen 361024, China
Cite this article: 

HE Liwen, SUN Dongya, LIAN Jiqiong, LIN Bizhou. Preparation and Photocatalytic Property of Co-Doped Hydroxyl-Zr Pillared Titanate. Chinese Journal of Materials Research, 2016, 30(4): 285-291.

Download:  HTML  PDF(1655KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mesoporous nanocomposite of Co-doped hydroxyl-Zr -pillared titanate (CZPT) was prepared via an exfoliation-restacking route, and the pre-exfoliated layered titanate was reassembled in an aqueous solution containing hydroxyl-Zr oligocations and Co ions. The influence of the doping Co cations on the preparation and catalytic activity of Zr-pillared titanate (abbreviated as ZPT) composites was investigated. The prepared CZPT was characterized by powder X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectra and porosity measurements. XRD and N2 absorption results suggested that the ZPT doped with 5% Co (mass fraction) had bigger pore diameter and specific area. The presence of 5% Co could effectively suppress the annihilation of the photogenerated hole-electron pairs, and correspondingly the absorption wavelength exhibits obviously red-shift. The degradation of rhodamine B (RhB) under ultraviolet and visible radiation shows that the as-prepared nanocomposite exhibits higher photocatalytic activities than that of layered titanate alone. The enhanced photocatalytic activity of the as-prepared nanocomposite CZPT-5 for the degradation of RhB under visible irradiation may be attributed to the coupling interaction between cations of the host and the Co containing guest.

Key words:  composite      titanate nanosheets      Co-doped      pillared materials      hydroxyl-Zr oligocations      photocatalytic     
Received:  24 September 2015     
ZTFLH:  O611.5  
  O613.51  
Fund: Supported by National Natural Science Foundation of China No.50872037 and Education Scientific Project of Young Teacher of Fujian Province No.JB14077
About author:  To whom correspondence should be addressed, Tel: 15959448863, E-mail: 2013123205@xmut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.542     OR     https://www.cjmr.org/EN/Y2016/V30/I4/285

Fig.1  Schematic illustration of the exfoliation-restacking route to prepare titanate composites
Fig.2  Powder XRD spectra of layered cesium titanate (a), layered protonic titanate (b), ZPT-5 (c), CZPT-20 (d), CZPT-10 (e) and CZPT-5 (f)
Sample Surface area/m2g-1 Pore volume
/mLg -1
Average
pore size
/nm
SBET
CsxTi2-x/4x/4O4 ~1
CZPT-20 121 0.35 3.71
CZPT-10 122 0.36 3.66
CZPT-5 145 0.40 3.61
ZPT-5 108 0.34 3.81
Table 1  Parameters obtained from N2 adsorption-desorption measurements
Sample Composition
Co Zr Ti O
CZPT-20 0.05 16.27 19.02 64.66
CZPT-10 0.12 15.04 17.92 66.93
CZPT-5 0.14 14.45 16.99 68.43
Table 2  Compositions of pillared composites (%, atomic fraction)
Fig.3  Nitrogen adsorption (closed symbols)-desorption (opened symbols) isotherms of ZPT-5 (a) and CZPT-5 (b)
Fig.4  SEM (a) and HRTEM (b) images of CZPT-5
Fig.5  UV-Vis diffuse reflectance spectra (a) and (F(R)hv)0.5-hv curves (b) of CZPT samples
Fig.6  Photodegradation of rhodamine B by layered titanate, ZPT-5, CZPT-20, CZPT-10 and CZPT-5
Sample 1st 2nd 3rd
ZPT-5 52.13 46.18 39.96
CZPT-20 79.91 61.25 49.68
CZPT-10 87.14 58.59 41.01
CZPT-5 91.71 55.32 39.23
Table 3  The repeatability of pillared composites (%)
1 H. Tong, S. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, J. H. Ye, Nano-photocatalytic materials: possibilities and challenges, Advanced Materials, 24(2), 229(2012)
doi: 10.1002/adma.201102752 pmid: 21972044
2 Z. G. Zou, J. H. Ye, K. Sayama, Arakawa H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414(6864), 625(2002)
doi: 10.1038/414625a pmid: 11740556
3 SHI Liping, LIU Chun, YIN Hengbo, WANG Aili, WANG Lijun, Preparation and visible light photocatalytic activties of hollow nanospheres of Ag+/Ag-TiO2, Chinese Journal of Materials Research, 28(11), 865(2014)
(石莉萍, 刘纯, 殷恒波, 王爱丽, 王丽君, Ag+/Ag-TiO2纳米空心球制备及其可见光催化性能, 材料研究学报, 28(11), 865(2014))
4 HU Longxing, XU Dandan, ZOU Lianpei, YUAN Hang, HU Xing, Heterogeneous fenton oxidation of refractory dye rhodamine B in aqueous solution with mesoporous Fe/SBA-15, Acta Physico-Chimica Sinca, 31(4), 771(2015)
(胡龙兴, 许丹丹, 邹联沛, 袁航, 胡星, 介孔Fe/SBA-15非均相芬顿氧化水中难降解染料罗丹明B, 物理化学学报, 31(4), 771(2015))
doi: 10.3866/PKU.WHXB201503023
5 L. Shi, L. Liang, F. X. Wang, M. S. Liu, J. M. Sun, Enhanced visible-light photocatalytic activity and stability over g-C3N4/Ag2CO3 composites, Journal of Materials Science, 50(4), 1718(2015)
6 C. R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. S. Benjamin, A. M. E.Raj, K. Jeyadheepand, C. Sanjeevirajae, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles, Ceramics International, 41(8), 9301(2015)
doi: 10.1016/j.ceramint.2015.03.238
7 G. M. Neelgund, A. Oki, Z. P. Luo, ZnO and cobalt phthalocyanine hybridized graphene: Efficient photocatalysts for degradation of rhodamine B, Journal of Colloid and Interface Science, 430(9), 257(2014)
doi: 10.1016/j.jcis.2014.04.053 pmid: 24972296
8 B. Z. Lin, B. H. Xu, L. W. He, X. R. Fan, H. Qu, Mesoporous cobalt-intercalated layered tantalotungstate with high visible-light photocatalytic activity, Microporous and Mesoporous Materials, 172(5), 105(2013)
doi: 10.1016/j.micromeso.2013.01.019
9 Z. J. Chen, B. Z. Lin, B. H. Xu, X. L. Li, Q. Q. Wang, K. Z. Zhang, M. C. Zhu, Preparation and characterization of mesoporous TiO2-pillared titanate photocatalyst, Journal of Porous Materials, 18(2), 185(2011)
doi: 10.1007/s10934-010-9369-1
10 YAN Shi, HUANG Qindong, LIN Jingdong, YUAN Youzhu, LIAO Daiwei, Photocatalytic activity of cobalt doped titania for H2 evolution, Acta Physico-Chimica Sinca, 27(10), 2406(2011)
(闫石, 黄勤栋, 林敬东, 袁友珠, 廖代伟, 钴掺杂二氧化钛的光催化制氢性能, 物理化学学报, 27(10), 2406(2011))
doi: 10.3866/PKU.WHXB20110929
11 H. Wang, J. Niu, X. Long, Y. He, Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions, Ultrasonics Sonochemistry, 15(4), 386(2008)
doi: 10.1016/j.ultsonch.2007.09.011
12 Q. Li, T. Kako, J. Ye, Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity, International Journal of Hydrogen Energy, 36(8), 4716(2011)
doi: 10.1016/j.ijhydene.2011.01.082
13 JIANG Fang, SHAO Fei, Preparation and photocatalytic performance of SiO2-pillared layered titanate, Journal of Inorganic Materials, 23(6), 1263(2008)
(江芳, 邵飞, SiO2柱层状钛酸的制备及光催化性能, 无机材料学报, 23(6), 1263(2008))
doi: 10.3724/SP.J.1077.2008.01263
14 C. B. Molina, J. A. Casas, J. A. Zazo, J. J. Rodríguez, A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation, Chemical Engineering Journal, 118(1-2), 29(2006)
doi: 10.1016/j.cej.2006.01.007
15 B. G. Mishra, R. G. Ranga, Physicochemical and catalytic properties of Zr-pillared montmorillonite with varying pillar density, Microporous and Mesoporous Materials, 70(1-3), 43(2004)
doi: 10.1016/j.micromeso.2004.02.018
16 S. J. Tsai, S. J. Jong, L. S. Du, S. C. Liu, S. Cheng, Pillared titanates: titanium oxide of high surface area and porosity, Microporous Materials, 2(2-3), 185(1994)
doi: 10.1016/0927-6513(94)E0051-U
17 YU Zhiyong, ZHANG Wei, MA Ming, CUI Xiaoli, Visible light photoelectrochemical response of nitrogen-doped TiO2 thin films prepared by anodic oxidation of titanium nitride films, Acta Physico-Chimica Sinca, 25(1), 35(2009)
(余志勇, 张维, 马明, 崔晓莉, 阳极氧化TiN薄膜制备N掺杂纳米TiO2薄膜及其可见光活性, 物理化学学报, 25(1), 35(2009))
doi: 10.3866/PKU.WHXB20090107
18 T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Applied Physics Letters, 81(3), 454(2002)
doi: 10.1063/1.1493647
19 D. W. Jing, L. J. Guo, Efficient hydrogen production by a composite CdS/Mesoporous zirconium titanium phosphate photocatalyst under visible light, Journal of Physical Chemistry C, 111(36), 13437(2007)
doi: 10.1021/jp071700u
20 M. Ni, M. K. H.Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable & Sustainable Energy Reviews, 11(3), 401(2007)
21 G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, BiVO4/Cobalt phthalocyanine (CoPc) nanofiber heterostructures: synthesis, characterization and application in photodegradation of methylene blue, Rsc Advances, 4, 53402(2014)
22 SHI Chengwu, ZHAN Xiaoping, SHI Gaoyang, TAO Li, Immobilization of various cobalt (Ⅱ) phthalocyanine sulphonates on nanocrystalline TiO2 thin films and their effect on degradation of methylene blue, Journal of the Chinese Ceramic Society, 39(5), 849(2011)
(史成武, 占小平, 史高杨, 桃李, 酞菁钴磺酸盐在纳米TiO2薄膜上的固载化及对亚甲基蓝的降解作用, 硅酸盐学报, 39(5), 849(2011))
23 HE Liwen, SUN Dongya, LIN Bizhou, Preparation, characterization and photocatalytic activity of mesoporous Zr-pillared titanate, Chinese Journal Inorganic Chemistry, 30(11), 2489(2014)
(何丽雯, 孙东亚, 林碧洲, 介孔锆柱撑钛酸盐材料的制备、表征及光催化性能, 无机化学学报, 30(11), 2489(2014))
24 H. Liu, B. Z. Lin, L. W. He, H. Qu, P. Sun, B. F. Gao, Y. L. Chen, Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis, Chemical Engineering Journal, 215(1), 396(2013)
25 SUN Dongya, LIN Bizhou, XU Baihuan, DING Cong, HE Liwen, Preparation and catalytic properties of cobalt dopped Zr-intercalated molybdenum disulfide, Petrochemical Technology, 36(2), 188(2007)
(孙东亚, 林碧洲, 许百环, 丁聪, 何丽雯, 含钴羟基锆柱撑MoS2复合材料的制备及催化性能, 石油化工, 36(2), 188(2007))
26 J. Miehé-Brendlé, L. Khouchaf, J. Baron, R. L. Dred, M. H. Tuilier, Zr-exchanged and pillared beidellite: preparation and characterization by chemical analysis, XRD and Zr K EXAFS, Microporous Materials, 11(3-4), 171(1997)
doi: 10.1002/1097-0142(19830215)51:4<618::AID-CNCR2820510412>3.0.CO;2-4
27 J. A. Wang, R. Limas-Ballesteros, T. López, A. Moreno, R. Gómez, O. Novaro, X. Bokhimi, Quantitative determination of titanium lattice defects and solid-State reaction mechanism in iron-doped TiO2 photocatalysts, Journal of Physics Chemistry B, 105(40), 9692(2001)
28 H. S. Hilal, L. Z. Majjad, N. Zaatar, A. El-Hamouz, Dye-effect in TiO2 catalyzed contaminant photo-degradation: Sensitization vs. charge-transfer formalism, Solid State Science, 9(1), 9(2007)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!