Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 38-44    DOI: 10.11901/1005.3093.2015.417
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Magnetic Properties of Amorphous- and Nanocrystalline-alloys of FeCuNbSiB with high Fe-content
WANG Ge1, BAO Jinfeng1, WANG Xinghua2,3, CHEN Yuhe1, ZHOU Fuwei1, LI Qiang1,3,**()
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2. College of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
3. College of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
Cite this article: 

WANG Ge, BAO Jinfeng, WANG Xinghua, CHEN Yuhe, ZHOU Fuwei, LI Qiang. Preparation and Magnetic Properties of Amorphous- and Nanocrystalline-alloys of FeCuNbSiB with high Fe-content. Chinese Journal of Materials Research, 2016, 30(1): 38-44.

Download:  HTML  PDF(1422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of transition metal elements, such as Zr, Nb, Mo and Cu on the amorphous forming ability, thermal stability and magnetic propertywere investigated for the Fe78Si9B13 alloy.By varying the Fe content of the Fe74Cu1Si13B9Nb3amorphous alloy, two series alloys, i.e. Fe(76+x)Cu1Nb3Si(11-x)B9(x=0, 2, 4) and Fe(79+x)Cu1Nb2Si(6-x)B12(x=0, 2, 4) amorphous- and nanocrystalline-alloyswere prepared and finally their ribbons were producedby melt-spinning.The microstructures and magnetic properties of the prepared ribbonswere investigated by XRD, DSC, TEM and VSM etc. and the soft magnetic properties ofthe high Fe content alloyswere optimized by increasing the content of Nb.The results showed that theelements of Zr and Nb can effectively improve the amorphous forming ability and thermal stability of Fe78Si9B13 alloys; A seriesFe-Cu-Nb-Si-B amorphous- and nanocrystalline-alloys with Fe content >80% (atomic fraction) were successfully prepared, themicrostructures of which are typically composed of dual amorphous- and nanocrystalline-phase. Their saturation magnetizations Bs are larger than 180emu/g and coercivitiesHcare between 2Oe and 9Oe, which means the alloys exhibit a good soft magnetic property. Thecoercivity would be reducedsince the grain size would be refined and thus the soft magnetic properties would be significantly improved as the Nbcontent increases. When the Fe content is between 80% (atomic fraction) and 83% (atomic fraction), the alloyswould exhibit an excellent soft magnetic property but when the Fe content comes to 85% (atomic fraction), phases of Fe2B and Fe3B would be precipitated that would furiouslydeterioratethe soft magnetic properties of the alloys.

Key words:  metallic materials      amorphous and nanocrystalline alloy      amorphous forming ability      saturation magnetization      coercivity     
Received:  22 July 2015     
Fund: *Supported by the National Science and Technology Support Project of China No.2013BAE08B01, the Major State Basic Application Research Development Project of Hebei No.13961001D and the Basic and Frontier Applied Technology Project of Tianjin No.14JCZDJC38600.
About author:  **To whom correspondence should be addressed, Tel: (022)60436888, E-mail: liqiang@hebut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.417     OR     https://www.cjmr.org/EN/Y2016/V30/I1/38

Fig.1  XRD curves of alloys added Zr, Nb, Mo or Cu to Fe78Si13B9
Fig.2  DSC curves of Fe77Cu1Si13B9、Fe74Cu1Si13B9M3(M=Zr、Nb)
Sample Tg(K) Tx(K) Tp1(K) Tp2(K) Tm(K) Tl(K) ΔTx(K) TrgTg/Tm
Fe77Cu1Si13B9 711.4 723.0 828.0 1428.8 1496
Fe74Cu1Zr3Si13B9 720.9 772.5 795.3 923.7 1384.2 1518 51.6 0.521
Fe74Cu1Nb3Si13B9 708.6 755.9 805.8 969.4 1373 1511 47.3 0.516
Table 1  Characteristic temperatures (Tg, Tx, Tp1, Tp2, Tm, Tl) and GFAparameters (ΔTx, Trg) of alloys
Fig.3  M-H hysteresis loops of Fe(77-x)Cu1Mx Si9B12 alloys
Sample Ms(emu/g) Hc(Oe) Mr(emu/g)
Fe78Si13B9 157.79 2.66 8.02
Fe77Cu1Si13B9 171.70 2.29 9.84
Fe74Cu1Zr3Si13B9 164.64 2.21 16.51
Fe74Cu1Nb3Si13B9 162.69 2.14 14.00
Fe74Cu1Mo3Si13B9 156.37 2.17 9.31
Table 2  Magnetic parameters of Fe(77-x)Cu1Mx Si13B9
Fig.4  XRD curves of Fe(74+x)Cu1Nb3Si(13-x)B9(x=0, 2, 4, 6)
Fig.5  XRD curves of Fe85Cu1Nb2Si2B10 and Fe(79+x)Cu1Nb2Si(6-x)B12 (x=0, 2, 4)
Fig.6  TEM pictures on alloys of (a) Fe79Cu1Nb2Si6B12, (b) Fe81Cu1Nb2Si4B12, (c) Fe83Cu1Nb2Si2B12
Sample Ms(emu/g) Hc(Oe) Mr(emu/g)
Fe74Cu1Nb3Si13B9 162.69 2.14 14.00
Fe76Cu1Nb3Si11B9 170.10 2.30 16.52
Fe78Cu1Nb3Si9B9 175.14 2.30 17.03
Fe79Cu1Nb2Si6B12 177.58 2.21 11.48
Fe80Cu1Nb3Si7B9 181.21 6.27 25.45
Fe81Cu1Nb2Si4B12 184.16 2.83 16.34
Fe83Cu1Nb2Si2B12 188.37 9.73 40.26
Fe85Cu1Nb2Si2B10 185.20 94.757 77.64
Table 3  Magnetic parameters of high Fe content FeCuNbSiB alloys
Fig.7  Relation of Bs and Hc with Fe content of FeCuNbSiB alloys
Fig.8  XRD curves of Fe(83-x)Cu1Nb(2+x)Si2B12(x=0, 1, 2, 3)
Fig.9  Changing curves of Bs and Hc with Nb content of Fe(83-x)-Cu1Nb(2+x)Si2B12(x=1, 2, 3)
Sample Bs(eum/g) Hc(Oe) Mr(emu/g)
Fe83Cu1Nb2Si2B12 188.37 9.73 40.26
Fe82Cu1Nb3Si2B12 185.42 8.56 43.49
Fe81Cu1Nb4Si2B12 183.77 2.42 19.72
Fe80Cu1Nb5Si2B12 179.56 1.96 18.78
Table 4  Magnetic parameters of Fe(83-x)Cu1Nb(2+x)Si2B12(x=1, 2, 3)
1 QI Ruilei, TONG Hui, YAN Mi, Structure and magnetic properties of nanocrystalline Fe73.5Cu1Nb3-xTixSi13.5B9 (x=0, 1, 2, 3) powders, Rare Metal Materials and Engineering, 41(3), 510(2012)
(亓瑞磊, 童辉, 严密, Fe73.5Cu1Nb3-xTixSi13.5B9(x=0, 1, 2, 3)合金粉的结构与磁性, 稀有金属材料与工程, 41(3), 510(2012))
2 Suryanarayana C, Inoue A, Iron-based bulk metallic glasses, International Materials Reviews, 58(3), 131(2013)
3 Chen F G, Wang Y G, Miao X F, Hong H, Bi K, Nanocrystalline Fe83P16Cu1 soft magnetic alloy produced by crystallization of its amorphous precursor, Journal of Alloys and Compounds, 549(5), 26(2013)
4 Yoshizawa Y, Oguma S, Yamauchi K, Magnetic properties of nano-crystalline alloy Fe-Si-B, J. Appi. Phys., 64, 6040(1988)
5 ZHANG Yanzhong, High-frequency magnetic properties ofnanocrystallineFe67.9Cu0.5Nb0.6Cr3V1Si14B13alloy with high initial permeability, Metallic Functional Materials, 10(3), 125(2003)
(张延忠, 导磁纳米晶Fe67.9Cu0.5Nb0.6Cr3V1Si14B13合金的高频磁性能, 金属功能材, 10(3), 125(2003))
6 Yoshizawa Y, Magnetic properties and application of nanostructured soft magnetic materials, Scripta Materialia, 44(8-9), 1321(2001)
7 Jiao Z B, Li H X, Wu Y, Gao J E, Wang S L, Yi Seonghoon, Lu Z P, Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys, Science China Physics, Mechanics and Astronomy, 53(3), 430(2010)
8 XIAO Li, ZHANG Ke, HUA Zhong, Yao Bin, Effects of boron content on crystallization formability and magnetic properties of Fe91-xZr5BxNb4 amorphous alloys, Acta Metallurgica Sinica, 41(2), 203(2005)
(肖利, 张可, 华中, 姚斌, 硼含量对Fe-Zr-B-Nb非晶合金的晶化、形成能力和磁性的影响, 金属学报, 41(2), 203(2005))
9 DONG Lirong, ZHANG Liwen, ZUO Bin, YU Wanqiu, HUA Zhong, Influences of Nb addition on the glass forming ability and magnetic properties in Fe-Y-B alloy, Electronic Components and Materials, 32(6), 53(2013)
(董丽荣, 张立文, 左彬, 于万秋, 华中, Nb添加对Fe-Y-B合金非晶形成能力和磁性的影响, 电子元件与材料, 32(6), 53(2013))
10 ZHANG Yanan, WANG Youjun, KONG Lingti, LI Jinfu, Influence of Y additation on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy, Acta Phys. Sin., 61(15), 157502(2012)
(张亚楠, 王有骏, 孔令体, 李金富, Y对Fe-Si-B合金非晶形成能力及软磁性能的影响, 物理学报, 61(15), 157502(2012))
11 Herzer G, Grain structure and magnetism of nanocrystallineferromagnets, IEEE Transactions on Magnetics, 25(5), 3327(1989)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!