Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 45-50    DOI: 10.11901/1005.3093.2015.028
Orginal Article Current Issue | Archive | Adv Search |
Preparation of Anti-satic Zirconia Ceramics by Carburization at High Temperature
YANG Xianfeng1,**(), XU Xiewen1, LIU Qicheng1, XIE Zhipeng2
1. College of physics and electronics science, Changsha university of science & technology, Changsha 410014, China
2. State Key Laboratory of New Ceramics and Fine Processing, College of Materials Science, Tsinghua University, Beijing 100084, China
Cite this article: 

YANG Xianfeng, XU Xiewen, LIU Qicheng, XIE Zhipeng. Preparation of Anti-satic Zirconia Ceramics by Carburization at High Temperature. Chinese Journal of Materials Research, 2016, 30(1): 45-50.

Download:  HTML  PDF(1925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Anti-static zirconia ceramic with perfect mechanical properties was prepared by carburization treatment method. The influence of carburization temperature and time on the surface resistivity and Vickers hardness was investigated. It shows that after carburization the surface resistivity was decreased, while Vickers hardness was enhanced for the ZrO2 ceramics. After carburization at 1450℃ for 3 h, the surface resistivity of ZrO2 ceramic could be reduced to 107 Ω/□ and Vickers hardness could be enhanced slightly to 14 GPa; the surface modification layer was about 3 μm in thickness; and of which the carbon content deceased from the surface towards the inner. It was verified by XPS that carbon in the inner portion of carburization layer existed as elemental status, while on the surface layer as element C and carbide ZrC0.85, which might facilitate the anti-static property of the ZrO2 ceramics.

Key words:  inorganic non-metallic materials      anti-static      carburization      surface resistivity      zirconia     
Received:  14 January 2015     
Fund: *Supported by National Natural Science Foundation of China No.51102024
About author:  **To whom correspondence should be addressed, Tel: (0731)85258232, E-mail: yangxf05@mails. thu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.028     OR     https://www.cjmr.org/EN/Y2016/V30/I1/45

Fig.1  Influence of carburization temperature (a) and time (b) on the surface resistivity
Fig.2  Influence of carburization temperature (a) and time (b) on the Vickers hardness
Fig.3  SEM photograph of the ceramic before (a) and after (b) carburization, EDS spectrum of carburized sample (c) and XRD spectrum of the samples (d)
Fig.4  XPS wide spectra of 3Y-TZP ceramic before and after carburization
Fig.5  XPS spectra of C1s, O1s, Y3d and Zr3d before and after carburization
1 S. Z. Liu, W. Q. Yang, J. X. Lei, C. L. Zhou, Properties of nanoparticles filled soft poly (vinyl chloride) composites including antistatic plasticizer, Journal of Applied Polymer Science, 127(4), 3221(2013)
2 C. Fontanesi, C. Leonelli, T. Manfredini, Characterisation of the surface conductivity of glassy materials by means of impedance spectroscopy measurements, Journal of the European Ceramic Society, 18(11), 1593(1998)
3 H. Q. Liang, X. M. Yao, H. Deng, H. Zhang, X. J. Liu, Z. R. Huang, High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives, Journal of the European Ceramic Society, 35(1), 399(2015)
4 E. Zschippang, H. Klemm, M. Herrmann, K. Sempf, U. Guth, A. Michaelis, Electrical resistivity of silicon nitride-silicon carbide based ternary composites, Journal of the European Ceramic Society, 32(1), 157(2012)
5 T. Q. Zhang, Y. J. Wang, Y. Zhou, G. M. Song, Electrical resistivity of silicon nitride-silicon carbide based ternary composites, International Journal of Refractory Metals and Hard Materials, 28(4), 498(2010)
6 N. Susumu, K. Shinichi, M. Yasuo, S. Toshihisa, Effect of ZnO additon on the electrical resistance of 2.6 mol%-Y2O3 stabilized zirconia ceramic, Journal of Materials Science, 41(5), 1631(2006)
7 D. H. Fan, Z. L. Xu, S. P. Li, Investigations of Iron Implanted in Zirconia, Journal of Nanjing University (Natural Science), 39(1), 76(2003)
8 S. Marinel, D. H. Choi, R. Heuguet, D. Agrawal, M. Lanagan, Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes, Ceramic International, 39(1), 39(2013)
9 LI Yong, XIE Xiewen, YANG Xiangfeng, XIE Zhipeng, Preparation of antistatic ceramics employing Fe-infiltration in sintered zirconia body, Journal of Inorganic Materials, 29(10), 1099(2014)
(李勇, 徐协文, 杨现锋, 谢志鹏, Fe高温浸渗法制备防静电3Y-TZP 陶瓷及其性能研究, 无机材料学报, 29(10), 1099(2014))
10 MA Li, WANG Maoqiu, SHI Jie, HUI Weijun, DONG Han, Rolling contact fatigue of microalloying case carburized gear steels, Chinese Journal of Materials Research, 23(3), 251(2009)
(马莉, 王毛球, 时捷, 惠卫军, 董瀚, 微合金化渗碳齿轮钢的接触疲劳性能, 材料研究学报, 23(3), 251(2009))
11 WANG Daning, LIANG Kaiming, WAN Junlin, Carbon-containing zirconia ceramics, Journal of the Chinese Ceramic Society, 26(2), 230(1998)
(王大宁, 梁开明, 万菊林., 含碳的氧化锆陶瓷, 硅酸盐学报, 26(2), 230(1998))
12 JIANG Yao, HE Yuehui, TANG Yiwu, LI Zhi, HUANG Boyun, Behavior and mechanism of TiAl based alloy surface carburization, Chinese Journal of Materials Research, 19(2), 139(2005)
(江垚, 贺跃辉, 汤义武, 李智, 黄伯云, TiAl基合金的表面渗碳行为及其机理, 材料研究学报, 19(2), 139(2005))
13 P. Zhang, S. X. Li, Z. F. Zhang, General relationship between strength and hardness, Materials Science and Engineering A, 529(25), 62(2011)
14 X. G. Wang, W. M. Guo, Y. M. Kan, G. J. Zhang, Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives, Journal of the European Ceramic Society, 31(6), 1103(2011)
15 Y. Long, A. Javed, J. Chen, Phase composition, microstructure and mechanical properties of ZrC coatings produced by chemical vapor deposition, Ceramics International, 40(1), 707(2014)
16 A. M. Chu, M. L. Qin, Rafi-ud-din, L. Zhang, H. F. Lu, B. R. Jia, X. H. Qu, Carbothermal synthesis of ZrC powders using a combustion synthesis precursor, International Journal of Refractory Metals and Hard Materials, 36(1), 204(2013)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!