|
|
Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid) |
ZHANG Luanluan1,2, GAO Hejun1,2,**( ), LIAO Yunwen1,2,**( ) |
1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637009, China 2. Institute of Applied Chemistry, China West Normal University, Nanchong 637009, China |
|
Cite this article:
ZHANG Luanluan, GAO Hejun, LIAO Yunwen. Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid). Chinese Journal of Materials Research, 2016, 30(4): 307-313.
|
Abstract A novel composite material CPAIL@TiO2, which exhibits high photocatalytic activity, was prepared by a sol-gel method using raw materials of tetrabutoxytitanium and cross-linked poly(amphoteric ionic liquid) (CPAIL). The prepared CPAIL@TiO2 was characterized by XRD, SEM, EDS, TEM, FT-IR, TGA and XPS. The results show that the mesoporous nanospheres of composite material CPAIL@TiO2 contains ca 40% TiO2, which is characterized as anatase. There existed chemical bands of C–O–Ti in the composite material. The CPAIL@TiO2 shows a good photocatalytic activity and cycle performance. The photocatalytic degradation efficiencies of the CPAIL@TiO2 could reach 97% and 55% of those of pure TiO2 for solutions of methyl orange (MO) and methylene blue (MB) respectively. In general, the above superiority of the composite material CPAIL@TiO2 demonstrates better prospects for applications in the field of environmental protection.
|
Received: 14 September 2015
|
|
Fund: Supported by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province No.2015JY0042, the Key Fund Project of Education Department of Sichuan Province No.15ZA0147, and the Fundamental Research Funds of China West Normal University No.14E015 |
About author: To whom correspondence should be addressed, Tel: (0817)2692276, E-mail: hejun_gao@126.com; liao-yw@163.com |
1 |
DAI Shijun, DU Lin, HU Changwei, ZHANG Xinshen, Investigation on electrocatalytic degradation of methyl orange on Ti/TiO2 anode doped with Ru-Pd, Acta Chim. Sinica, 66, 14(2008)
|
|
(代仕均, 杜琳, 胡常伟, 张新申, 钌-钯掺杂 Ti/TiO2阳极电催化降解甲基橙研究, 化学学报, 66, 14(2008))
|
2 |
WANG Tianhui, LI Yuexiang, PENG Shaoqin, LV Gongxuan, LI Shuben, Activity of rare earth doped TiO2 deposited with Pt for photocatalytic hydrogen generation, Acta Chim. Sinica, 63, 9(2005)
|
|
(王添辉, 李越湘, 彭绍琴, 吕功煊, 李树本, 铂修饰的稀土掺杂 TiO2 的光催化制氢活性, 化学学报, 63, 9(2005))
|
3 |
MST Goncalves, EMS Pinto, P. Nkeonye, AMF Oliveira-Campos, Degradation of C. I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis, Dyes and Pigments, 64, 2(2004)
|
4 |
ZOU Zhigang, ZHAO Jincai, C, FU Xianzhi, ZHANG Pengyi CHEN Jun, ZHU Hongming, YE Jinhua, Functional Materials Information, 2, 6(2005)
|
|
(邹志刚, 赵进才, 付贤智, 张彭义, 陈军, 朱洪明, 叶金花, 光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势, 功能材料信息, 2, 6(2005))
|
5 |
Y. Yang, G. Z. Wang, Q. Deng, H. L. Ng, Dickon, H. J. Zhao, Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange, ACS Applied Materials & Interfaces, 6, 4(2014)
|
6 |
S. B. Wang, L. Pan, J. J. Song, W. B. Mi, J. J. Zou, J. J.; L. Wang, X. W. Zhang,Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature fFerromagnetism, and remarkable photocatalytic performance, Journal of the American Chemical Society, 137, 8(2015)
|
7 |
E. Lira, S. Wendt, P. Huo, J. O. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Laegsgaard, F. Besenbacher, The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces, Journal of the American Chemical Society, 133, 17(2011)
doi: 10.1021/ja1085723
|
8 |
F. T. Li, Y. Zhao, Y. J. Hao, X. J. Wang, R. H. Liu, D. S. Zhao, D. M. Chen, N-doped P25 TiO2-amorphous Al2O3 composites: One-step solution combustion preparation and enhanced visible-light photocatalytic activity, Journal of Hazardous Materials, 239-240, 118(2012)
|
9 |
C. Cantau, T. Pigot, J. C. Dupin, S. Lacombe, N-doped TiO2 by low temperature synthesis: Stability, photo-reactivity and singlet oxygen formation in the visible range, Journal of Photochemistry and Photobiology, A: Chemistry, 216(s2-3), 201(2010)
|
10 |
F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process, Catalysis Communications, 10, 11(2009)
doi: 10.1016/j.catcom.2008.07.022
|
11 |
Y. L. Kuo, T. L. Su, F. C. Kung, T. Wu, Study of parameter setting and characterization of visible-light driven nitrogen-modified commercial titanium oxide photocatalysts, Journal of Hazardous Materials, 190(1-3), 938(2011)
doi: 10.1016/j.jhazmat.2011.04.031
|
12 |
M. Wu, J. Jin, J. Liu, Z.Deng, Y. Li, O. Depairs, B. Su, LHigh photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption, Journal of Materials Chemistry A: Materials for Energy and Sustainability, 1, 48(2013)
|
13 |
L. Ren, Y. Li, J. Hou, X. Zhao, C. Pan, Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores, ACS Applied Materials & Interfaces, 6, 3(2014)
|
14 |
S. M. Oh, J. Y. Hwang, C. S. Yoon, J. Lu, K. Amine, L. Illias Belharouak, Y. K. Sun, High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery, ACS Applied Materials & Interfaces, 6, 14(2014)
|
15 |
T. G. Deepak, D. Subash, G. S. Anjusree, K. R. Pai, Narendra; Nair, Shantikumar V.; Nair, A. Sreekumaran, Photovoltaic property of anatase TiO2 3-D mesoflowers, ACS Sustainable Chemistry & Engineering, 2, 12(2014)
|
16 |
H. B. Jiang, Q. Cuan, C. Z. Wen, J. Xing, D. Wu, X. Q. Gong, C. Z. Li, H. G. Yang, Anatase TiO2 crystals with exposed high-index facets, Angewandte Chemie, International Edition, 50, 16(2011)
|
17 |
H. W. Zhu, Z. X. Chen, Y. Sheng, T. T. L.Thi, Flaky polyacrylic acid/aluminium composite particles prepared using in-situ polymerization, Dyes and Pigments, 86, 2(2010)
doi: 10.1016/j.dyepig.2009.12.012
|
18 |
H. K. Jeong, Y. P. Lee, J. W. E Lahaye, M. H. Park, K. H. An, L. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, Journal of the American Chemical Society, 130, 4(2008)
doi: 10.1021/ja076473o
pmid: 18179214
|
19 |
Q. Zhang, Y. Q. He, X. G. Chen, D. H. Hu, L. J. Li, T. Yin, L. L. Ji, Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite, Chinese Science Bulletin, 56, 3(2011)
|
20 |
N. J. Bell, Y. H. Ng, A. Du, H. Coster, S. C. Smith, R. J. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, Journal of Physical Chemistry C, 115, 13(2011)
|
21 |
C. C. Su, K. F. Lin, Y. H. Lin, B. H. You, Preparation and characterization of high-surface-area titanium dioxide by sol-gel process, Journal of Porous Materials, 13, 3/4(2006)
|
22 |
J. L. Zhang, S. Q. Cao, S. B. Xu, H. G. Yang, L. Yang, Y. Q. Song, L. Jiang, Y. Dan, Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst, Applied Surface Science, 349(2015)
doi: 10.1016/j.apsusc.2015.04.192
|
23 |
B. K. Nath, J. N. Ganguli, Hydrogenation with ruthenium nano particles supported on MCM-48, Asian Journal of Science and Technology, 5, 3(2014)
|
24 |
Q. Cheng, J. H. Sui, W. Cai, Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions, Nanoscale, 4, 3(2012)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|