Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 307-313    DOI: 10.11901/1005.3093.2015.511
Orginal Article Current Issue | Archive | Adv Search |
Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid)
ZHANG Luanluan1,2, GAO Hejun1,2,**(), LIAO Yunwen1,2,**()
1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637009, China
2. Institute of Applied Chemistry, China West Normal University, Nanchong 637009, China
Cite this article: 

ZHANG Luanluan, GAO Hejun, LIAO Yunwen. Enhancement of Photocatalytic Activity of TiO2 with Cross-linked Poly (amphoteric ionic liquid). Chinese Journal of Materials Research, 2016, 30(4): 307-313.

Download:  HTML  PDF(3343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel composite material CPAIL@TiO2, which exhibits high photocatalytic activity, was prepared by a sol-gel method using raw materials of tetrabutoxytitanium and cross-linked poly(amphoteric ionic liquid) (CPAIL). The prepared CPAIL@TiO2 was characterized by XRD, SEM, EDS, TEM, FT-IR, TGA and XPS. The results show that the mesoporous nanospheres of composite material CPAIL@TiO2 contains ca 40% TiO2, which is characterized as anatase. There existed chemical bands of C–O–Ti in the composite material. The CPAIL@TiO2 shows a good photocatalytic activity and cycle performance. The photocatalytic degradation efficiencies of the CPAIL@TiO2 could reach 97% and 55% of those of pure TiO2 for solutions of methyl orange (MO) and methylene blue (MB) respectively. In general, the above superiority of the composite material CPAIL@TiO2 demonstrates better prospects for applications in the field of environmental protection.

Key words:  composites      ionic liquid      TiO2      sol-gel      polymer      photocatalysis     
Received:  14 September 2015     
Fund: Supported by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province No.2015JY0042, the Key Fund Project of Education Department of Sichuan Province No.15ZA0147, and the Fundamental Research Funds of China West Normal University No.14E015
About author:  To whom correspondence should be addressed, Tel: (0817)2692276, E-mail: hejun_gao@126.com; liao-yw@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.511     OR     https://www.cjmr.org/EN/Y2016/V30/I4/307

Fig.1  XRD spectra of CPAIL@TiO2 and TiO2
Fig.2  SEM images of TiO2 (a) and CPAIL@TiO2 (b)
Fig.3  TEM images of CPAIL@TiO2, (a) TEM, (b) HRTEM, (c) distribution of Ti element, (d) selected area electron diffraction
Fig.4  TGA curves of CPAIL@TiO2 and TiO2
Fig.5  XPS analysis of CPAIL@TiO2, (a) full spectrum, (b) C 1s, (c) O 1s, (d) N 1s, (e) S 2p, (f) Ti 2p
Fig.6  FT-IR analysis of the various samples
Fig.7  N2 adsorption-desorption and BJH curves of CPAIL@TiO2
Fig.8  The photocatalytic degradation of MB
Fig.9  The photocatalytic degradation of MO
Fig.10  Solid UV-DRS of pure TiO2 and CPAIL@TiO2
Fig.11  The photocatalytical cycle times of MO and MB
1 DAI Shijun, DU Lin, HU Changwei, ZHANG Xinshen, Investigation on electrocatalytic degradation of methyl orange on Ti/TiO2 anode doped with Ru-Pd, Acta Chim. Sinica, 66, 14(2008)
(代仕均, 杜琳, 胡常伟, 张新申, 钌-钯掺杂 Ti/TiO2阳极电催化降解甲基橙研究, 化学学报, 66, 14(2008))
2 WANG Tianhui, LI Yuexiang, PENG Shaoqin, LV Gongxuan, LI Shuben, Activity of rare earth doped TiO2 deposited with Pt for photocatalytic hydrogen generation, Acta Chim. Sinica, 63, 9(2005)
(王添辉, 李越湘, 彭绍琴, 吕功煊, 李树本, 铂修饰的稀土掺杂 TiO2 的光催化制氢活性, 化学学报, 63, 9(2005))
3 MST Goncalves, EMS Pinto, P. Nkeonye, AMF Oliveira-Campos, Degradation of C. I. Reactive Orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis, Dyes and Pigments, 64, 2(2004)
4 ZOU Zhigang, ZHAO Jincai, C, FU Xianzhi, ZHANG Pengyi CHEN Jun, ZHU Hongming, YE Jinhua, Functional Materials Information, 2, 6(2005)
(邹志刚, 赵进才, 付贤智, 张彭义, 陈军, 朱洪明, 叶金花, 光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势, 功能材料信息, 2, 6(2005))
5 Y. Yang, G. Z. Wang, Q. Deng, H. L. Ng, Dickon, H. J. Zhao, Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange, ACS Applied Materials & Interfaces, 6, 4(2014)
6 S. B. Wang, L. Pan, J. J. Song, W. B. Mi, J. J. Zou, J. J.; L. Wang, X. W. Zhang,Titanium-​defected undoped anatase TiO2 with p-​type conductivity, room-​temperature fFerromagnetism, and remarkable photocatalytic performance, Journal of the American Chemical Society, 137, 8(2015)
7 E. Lira, S. Wendt, P. Huo, J. O. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Laegsgaard, F. Besenbacher, The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces, Journal of the American Chemical Society, 133, 17(2011)
doi: 10.1021/ja1085723
8 F. T. Li, Y. Zhao, Y. J. Hao, X. J. Wang, R. H. Liu, D. S. Zhao, D. M. Chen, N-​doped P25 TiO2-​amorphous Al2O3 composites: One-step solution combustion preparation and enhanced visible-​light photocatalytic activity, Journal of Hazardous Materials, 239-240, 118(2012)
9 C. Cantau, T. Pigot, J. C. Dupin, S. Lacombe, N-​doped TiO2 by low temperature synthesis: Stability, photo-​reactivity and singlet oxygen formation in the visible range, Journal of Photochemistry and Photobiology, A: Chemistry, 216(s2-3), 201(2010)
10 F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process, Catalysis Communications, 10, 11(2009)
doi: 10.1016/j.catcom.2008.07.022
11 Y. L. Kuo, T. L. Su, F. C. Kung, T. Wu, Study of parameter setting and characterization of visible-​light driven nitrogen-​modified commercial titanium oxide photocatalysts, Journal of Hazardous Materials, 190(1-3), 938(2011)
doi: 10.1016/j.jhazmat.2011.04.031
12 M. Wu, J. Jin, J. Liu, Z.Deng, Y. Li, O. Depairs, B. Su, LHigh photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption, Journal of Materials Chemistry A: Materials for Energy and Sustainability, 1, 48(2013)
13 L. Ren, Y. Li, J. Hou, X. Zhao, C. Pan, Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores, ACS Applied Materials & Interfaces, 6, 3(2014)
14 S. M. Oh, J. Y. Hwang, C. S. Yoon, J. Lu, K. Amine, L. Illias Belharouak, Y. K. Sun, High electrochemical performances of microsphere C-​TiO2 anode for sodium-​ion battery, ACS Applied Materials & Interfaces, 6, 14(2014)
15 T. G. Deepak, D. Subash, G. S. Anjusree, K. R. Pai, Narendra; Nair, Shantikumar V.; Nair, A. Sreekumaran, Photovoltaic property of anatase TiO2 3-​D mesoflowers, ACS Sustainable Chemistry & Engineering, 2, 12(2014)
16 H. B. Jiang, Q. Cuan, C. Z. Wen, J. Xing, D. Wu, X. Q. Gong, C. Z. Li, H. G. Yang, Anatase TiO2 crystals with exposed high-index facets, Angewandte Chemie, International Edition, 50, 16(2011)
17 H. W. Zhu, Z. X. Chen, Y. Sheng, T. T. L.Thi, Flaky polyacrylic acid​/aluminium composite particles prepared using in-​situ polymerization, Dyes and Pigments, 86, 2(2010)
doi: 10.1016/j.dyepig.2009.12.012
18 H. K. Jeong, Y. P. Lee, J. W. E Lahaye, M. H. Park, K. H. An, L. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, Journal of the American Chemical Society, 130, 4(2008)
doi: 10.1021/ja076473o pmid: 18179214
19 Q. Zhang, Y. Q. He, X. G. Chen, D. H. Hu, L. J. Li, T. Yin, L. L. Ji, Structure and photocatalytic properties of TiO2-​graphene oxide intercalated composite, Chinese Science Bulletin, 56, 3(2011)
20 N. J. Bell, Y. H. Ng, A. Du, H. Coster, S. C. Smith, R. J. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-​reduced graphene oxide composite, Journal of Physical Chemistry C, 115, 13(2011)
21 C. C. Su, K. F. Lin, Y. H. Lin, B. H. You, Preparation and characterization of high-​surface-​area titanium dioxide by sol-​gel process, Journal of Porous Materials, 13, 3/4(2006)
22 J. L. Zhang, S. Q. Cao, S. B. Xu, H. G. Yang, L. Yang, Y. Q. Song, L. Jiang, Y. Dan, Study on stability of poly(3-​hexylthiophene)​/titanium dioxide composites as a visible light photocatalyst, Applied Surface Science, 349(2015)
doi: 10.1016/j.apsusc.2015.04.192
23 B. K. Nath, J. N. Ganguli, Hydrogenation with ruthenium nano particles supported on MCM-48, Asian Journal of Science and Technology, 5, 3(2014)
24 Q. Cheng, J. H. Sui, W. Cai, Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions, Nanoscale, 4, 3(2012)
[1] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[8] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[9] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[11] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
No Suggested Reading articles found!