Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 99-107    DOI: 10.11901/1005.3093.2015.035
Orginal Article Current Issue | Archive | Adv Search |
Removal of Copper from Copper-smelting Slags through Chloridizing Roast
LI Lei**(), ZHANG Renjie, HU Jianhang
(State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China)
Cite this article: 

LI Lei, ZHANG Renjie, HU Jianhang. Removal of Copper from Copper-smelting Slags through Chloridizing Roast. Chinese Journal of Materials Research, 2016, 30(2): 99-107.

Download:  HTML  PDF(1245KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The copper in copper-smelting slags can be removed effectively by means of chloridizing roast process, which is beneficial to recover iron from the copper-smelting slags. Thermodynamic analysis was carried out to characterize the performance of copper and iron during the chloridizing roast process. It follows that in a certain range of processing parameters, the copper removal rate can be enhanced with the increasing ing temperature and time for the process, and the increasing amount of CaCl2 addition and FeSO4. When the addition amount of FeSO4 was higher than 0.15 (mass ratio of FeSO4 to copper slags), SO2 was produced excessively and the (FeO) content in the reaction bed increased quickly. The generated FeO can be chlorinated easily, thereby caused an obvious increase of iron loss and decrease of the copper removal rates. The copper content in the slags decreased from 1.06% to 0.11% after a chloridizing roast treatment at 1373 K for 30 minutes, with an O2 flow velocity of 0.40 Lmin-1 and an addition amount of CaCl2 of 0.20 (mass ratios of CaCl2 to copper slags) and FeSO4 of 0.15(mass ratios of FeSO4 to copper slags).

Key words:  metallic materials      copper slags      chloridizing roast      copper removal     
Received:  19 January 2015     
ZTFLH:  TF524  
Fund: *Supported by National Natural Science Foundation of China No.51204082
About author:  **To whom correspondence should be addressed, Tel: (0871)65178347, E-mail: tianxiametal1008@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.035     OR     https://www.cjmr.org/EN/Y2016/V30/I2/99

Fig.1  XRD pattern of the copper slag cooled with the furnace in N2 atmosphere after melted
Components Fe CaO SiO2 Al2O3 MgO Cu S Pb Zn Others
Contents 38.55 2.77 34.08 3.90 1.14 1.06 0.52 2.07 1.84 14.07
Table1  Chemical composition of the copper slag(%, mass fraction)
Fig.2  Experimental device, 1-Furnace cover,2-MoSi2 heating staff, 3-Al2O3 furnace tube, 4-Thermocouple, 5-Al2O3 gas piping, 6-Reactor, 7- Fire-resistant pad block, 8-Control cabinet, 9-Flowmeter, 10-Relief valve
Fig.3  △rGmΘ-T relation graph of CaCl2 dissociation
Serial number Reactions △rGmΘ-T
(1) CaCl2+1/2O2(g)=CaO+Cl2(g) △rGmΘ=137.16-0.02T
(2) CaCl2+SiO2+1/2O2(g)=CaSiO3+Cl2(g) △rGmΘ=46.79-0.02T
(3) CaCl2+SO2(g)+O2(g)=CaSO4+Cl2(g) △rGmΘ= -352.36-0.24T
(4) CaCl2+2SO3(g)=CaSO4+SO2(g)+Cl2(g) △rGmΘ= -157.93-0.06T
Table 2  Reaction in the dissociation of CaCl2
Serial number Reactions T/K
(7) CuO+Cl2(g)=CuCl2+1/2O2(g) 473~1073
CuO+Cl2(g)=CuCl2(g)+1/2O2(g) 1073~1873
(8) FeO+Cl2(g)=FeCl2+1/2O2(g) 473~1273
1/3Fe2O3+Cl2(g)=2/3FeCl3(g)+1/2O2(g) 1273~1873
(9) 1/3Fe2O3+Cl2(g)=2/3FeCl3+1/2O2(g) 473 ~873
FeO+Cl2(g)=FeCl2(g)+1/2O2(g); 873~1873
(10) 2/9Fe3O4+Cl2(g)=2/3FeCl3+4/9O2(g) 473~873
2/9Fe3O4+Cl2(g)=2/3FeCl3(g)+4/9O2(g) 873~1873
(11) Cu2O+Cl2(g)=2CuCl+1/2O2(g) 473~1873
Table 3  Reactions during the roasting process between the copper, iron oxides and Cl2
Fig.4  △rGmΘ-T relation graph of the oxides chlorination by Cl2
Serial number Reactions T/K
(12) 1/2Cu2S+Cl2(g)=CuCl2+1/4S2(g) 473~1073
1/2Cu2S+Cl2(g)=CuCl2(g)+1/4S2(g) 1073~1873
(13) CuS+Cl2(g)=CuCl2+1/2S2(g) 473~1073
CuS+Cl2(g)=CuCl2(g)+1/2S2(g) 1073~1873
(14) FeS+Cl2(g)=FeCl2+1/2S2(g) 473 ~1273
FeS+Cl2(g)=FeCl2(g)+1/2S2(g) 1273~1873
(15) 2/3FeS+Cl2(g)=2/3FeCl3+1/3S2(g) 473~873
2/3FeS+Cl2(g)=2/3FeCl3(g)+1/3S2(g) 873~1873
Table 4  Reactions during the roasting process between the main sulfides and Cl2
Serial number Reactions T/K
(16) 2FeCl3=Fe2Cl6(g) 473~973
2FeCl3(g)=Fe2Cl6(g) 973~1873
(17) 2CuCl2=Cu2Cl4(g) 473~1073
2CuCl2(g)=Cu2Cl4(g) 1073~1873
Table 5  Polymerization of the chlorides during the copper slag chlorination roasting
Fig.5  △rGmΘ-T relation graph of the sulfides chlorination by Cl2
Fig.6  △rGmΘ-T relation graph of the polymerization of the chlorides
Fig.7  Effects of CaCl2 addition amounts on the slag copper contents after treatment
Fig.8  Effects of CaCl2 addition amounts on the slag iron contents after treatment
Fig.9  XRD pattern of the copper slag after treatment by chlorination roasting
Fig.10  Effects of FeSO4 addition amounts on the slag copper contents after treatment
Fig.11  Effects of FeSO4 addition amounts on the slag iron contents after treatment
Reactions T/K 1073 1173 1273 1373 1473
(18) ΔGQ/(KJmol-1) -13.89 -10.44 -7.07 -3.76 -0.55
Equilibrium constants/k18 673.21 88.24 16.33 3.94 1.22
(19) ΔGQ/(KJmol-1) -13.70 -9.30 -4.97 -0.76 3.36
Equilibrium constants/k19 615.68 53.93 7.22 1.31 0.34
Table 6  Gibbs free energy and equilibrium constants of reaction (18) and (19) at 1073-1473 K
Fig.12  Effects of roasting temperature on the slag copper contents after treatment
Fig.13  Effects of roasting temperature on the slag iron contents after treatment
Fig.14  Effects of residence time on the slag copper contents after treatment
Fig.15  Effects of residence time on the slag iron contents after treatment
T/K 1073 1173 1273 1373 1473
ΔGQ/KJ/mol -4.48 -4.99 -5.45 -5.88 -6.30
Equilibrium constants/k29 8.23 8.56 8.62 8.61 8.61
Table 7  Gibbs free energy and equilibrium constants of reaction (20) at 1073-1473 K
1 E. Rudnik, L. Burznska, W. Gumowska, Hydro metallurgical recovery of copper and cobalt from reduction-roasted copper converter slag, Minerals Engineering, 22(1), 88(2009)
2 ZHANG Yang, MAN Ruilin, NI Wangdong, WANG Hui, Selective leaching of base metals from copper smelter slag, Hydrometallurgy, 103(1-4), 25(2010)
3 F. Carranza, N. Iglesias, A. Mazuelos, Ferric leaching of copper slag floation tailings, Minerals Engineering, 22(1), 107(2009)
4 F. Carranza, R. Romero, A. Mazuelos, N. Iglesias, O. Forcat, Biorecovery of copper from converter slag: Slag characterization and exploratory ferric leaching tests, Hydrometallurgy, 97(1/2), 39(2009)
5 ZHANG Linnan, ZHANG Li, WANG Mingyu, SUI Zhitong, Oxidization mechanism in CaO-FeOX-SiO2 slag with high iron content, Trans.Nonferrous Met.Soc.China, 15(4), 938(2005)
6 ZHANG Linnan, Study on selective Precipitation Valuable Constituent in Copper Smelting Slags, PhD dissertation,Northeastern University(2005)
(张林楠, 炼铜炉渣中有价组分的选择性析出研究, 博士学位论文,东北大学(2005))
7 HAN Wei, QIN Qingwei, Recovery of copper and iron from copper slag, Mining and Metallurgy, 18(2), 9(2009)
(韩伟, 秦庆伟, 从炼铜炉渣中提取铜铁的研究, 矿冶, 18(2), 9(2009))
8 NI Wen, MA Mingsheng, WANG Yali, WANG Zhongjie, LIU Fengmei, Thermodynamic and kinetic in recovery of iron from nickel residue, Journal of University of Science and Technology Beijing, 31(2), 163(2009)
(倪文, 马明生, 王亚利, 王忠杰, 刘凤梅, 熔融还原法镍渣提铁的热力学与动力学, 北京科技大学学报, 31(2), 163(2009))
9 LI Lei, HU Jianhang, WANG Hua, Study on smelting reduction ironmaking of copper slag, The Chinese Journal of Process Engineering, 11(1), 65(2011)
(李磊, 胡建杭, 王华, 炼铜炉渣熔融还原炼铁研究, 过程工程学报, 11(1), 65(2011))
10 WANG Jianjun, GUO Shangxing, ZHOU Li, LI Qiang, Slag for decopperization and sulphur control in molten steel, Journal of iron and steel research, international, 16(2), 17(2009)
11 HU Xiaojun, JIANG Pingguo, YAN Zheng, ZHU Liquan, CHOU Kuochuih, H. Matsuura, Selective chlorination reaction of Cu2O and FeO mixture by CaCl2, ISIJ International, 53(3), 541(2013)
12 K. Maweja, T. Mukongo, I. Motombo, Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals, Journal of Hazardous Materials, 164(2-3), 856(2009)
13 FU Chongshui, The Principle of Nonferrous Metallurgy, (Beijing: Metallurgy Industry Press, 2012) p. 105
(傅崇说,有色冶金原理, ( 北京: 冶金工业出版社, 2012) p. 105)
14 A. B. Eduardo, J. M. Francisco, Chlorination methods applied to recover refractory metals from tin slags, Minerals Engineering, 21(2), 150(2008)
15 LI Lei, HU Jianhang, WANG Hua, Study on smelting oxidation desulfurization of copper slags, Journal of Iron and Steel research, international, 19(12), 14(2012)
16 N. V. Manukyan, V. H. Martirosyan, Investigation of the chlorination mechanism of metal oxides by chlorine, Journal of Materials Processing Technology, 142(1), 145(2003)
17 N. Kanari, E. Allain, I. Gaballah, Reactions of wustite and hematite with different chlorinating agents, Thermochimica Acta, 335(1-2), 79(1999)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!