Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (4): 284-290    DOI: 10.11901/1005.3093.2014.747
Current Issue | Archive | Adv Search |
Effect of Fe Content on Crystallization Behaviors and Magnetic Properties of Amorphous Alloys Fex(SiB)96-xP3Cu1
Liying CUI1,**(),Min QI2,Akihiro MAKINO3
1. Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Cite this article: 

Liying CUI,Min QI,Akihiro MAKINO. Effect of Fe Content on Crystallization Behaviors and Magnetic Properties of Amorphous Alloys Fex(SiB)96-xP3Cu1. Chinese Journal of Materials Research, 2015, 29(4): 284-290.

Download:  HTML  PDF(3302KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Crystallization behavior and soft magnetic properties of amorphous alloys Fex(SiB)96-xP3Cu1 (x=75, 78, 80, 83 and 85, atomic fraction, %) were investigated. It was found that the apparent activation energy for crystallization decreased with the increasing Fe content of the Fex(SiB)96-xP3Cu1 alloys. The phases precipitated after properly complete crystallization treatment were the same for all the alloys with varying Fe content. The annealed Fex(SiB)96-xP3Cu1 (x=80, 83 and 85) alloys exhibited a uniform nanostructure with grain size smaller than 20 nm, while the grain sizes of the alloys with x=75 and 78 ranged from 5 nm to 50 nm. The saturation magnetization enhanced nonlinearly as the Fe content increased from 75 to 85. The nanocrystalline alloy Fe85Si3B8P3Cu1 exhibited excellent soft magnetic properties with a coercivity of 12 Am-1 and a saturation magnetization of 1.87 T. The core loss values of nanocrystalline alloys Fe85Si3B8P3Cu1 and Fe83Si4B9P3Cu1 were still less than 1.0 Wkg-1 even if the saturation magnetic induction intensity was up to 1.7 T, which were superior to that of the commercial Fe78Si9B13 alloy and non-orientated silicon steel.

Key words:  metallic materials      Fe-based amorphous alloy      nanocrystallization      soft magnetic property      activation energy     
Received:  17 December 2014     
Fund: *Supported by National Natural Science Foundation of China No.51371042 and the Fundamental Research Funds for the Central Universities No.3132015098.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.747     OR     https://www.cjmr.org/EN/Y2015/V29/I4/284

Fig.1  DSC curves of the FeSiBPCu alloys at a heating rate of 0.67 K/s, (a) Fe75Si8B13P3Cu1, (b) Fe78Si6B12P3Cu1, (c) Fe80Si5B11P3Cu1, (d) Fe83Si4B9P3Cu1, (e) Fe85Si3- B8P3Cu1
Content (atomic fraction) Tc/K Tx1/K Tp1/K Tx2/K Tp2/K ΔT/K Ex /(kJ/mol) Ep /(kJ/mol) n
Fe75Si8B13P3Cu1 696 789 798 836 840 47 365.1 328.5 2.4
Fe78Si6B12P3Cu1 671 743 753 832 840 89 295.4 273.1 2.5
Fe80Si5B11P3Cu1 645 717 728 829 837 112 274.9 250.0 2.3
Fe83Si4B9P3Cu1 597 680 692 824 830 144 227.1 220.5 2.3
Fe85Si3B8P3Cu1 558 657 671 820 825 163 181.8 197.6 2.5
Table 1  Thermal physical parameters of Fex(SiB)96-xP3Cu1(x=75, 78, 80, 83 and 85) alloys
Fig.2  XRD spectra, HRTEM images and SAED patterns for the melt-spun alloys, (a) Fe75Si8B13P3Cu1, (b) Fe78Si6B12P3Cu1, (c) Fe80Si5B11P3Cu1, (d) Fe83Si4B9P3Cu1, (e) Fe85Si3B8P3Cu1, (f) XRD spectra
Fig.3  XRD spectra, HRTEM images and SAED patterns for the annealed alloys, (a) Fe75Si8B13P3Cu1, (b) Fe78Si6B12P3Cu1, (c) Fe80Si5B11P3Cu1, (d) Fe83Si4B9P3Cu1, (e) Fe85Si3B8P3Cu1, (f) XRD spectra
Content/% 2θ /(°) d /nm a /nm D /nm
Fe75Si8B13P3Cu1 45.00 0.2012 0.2846 28
Fe78Si6B12P3Cu1 44.92 0.2016 0.2850 23
Fe80Si5B11P3Cu1 44.88 0.2017 0.2853 20
Fe83Si4B9P3Cu1 44.84 0.2019 0.2855 18
Fe85Si3B8P3Cu1 44.82 0.2020 0.2856 14
Table 2  Lattice constant and grain size of the annealed Fex(SiB)96-xP3Cu1(x=75, 78, 80, 83 and 85) alloys
Fig.4  Soft magnetic properties of Fex(SiB)96-xP3Cu1 (x=75, 78, 80, 83 and 85) alloys
1 Y. Yoshizawa, S. Oguma, K. Yamauchi,New Fe-based soft magnetic alloys composed of ultrafine grain structure, Journal of Applied Physics, 64(10), 6044(1988)
2 K. Suzuki, N. Kataoka, A. Inoue,High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure, Materials Transactions, JIM, 31(8), 743(1990)
3 K. Suzuki, A. Makino, A. Inoue,Soft magnetic properties of nanocrystalline bcc FeZrB and FeMBCu (M=transition metal) alloys with high saturation magnetization, Journal of Applied Physics, 70(10), 100(1991)
4 M. A. Willard, D. E. Laughlin, M. E. Mechenry,Magnetic properties of hitperm (Fe, Co)88Zr7Cu4B1 magnets, Journal of Applied Physics, 84(12), 6773(1998)
5 M. A. Willard, D. E. Laughlin, M. E. Mechenry,Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys, Journal of Applied Physics, 84(12), 6773(1999)
6 F. E. Luborsky, J. J. Becker, J. L. Walter, H. Liebwemann,Formation and magnetic properties of Fe-B-Si amorphous alloys, IEEE Transactions on Magnetics, 15(4), 1146(1979)
7 M. Mitera, M. Naka, T. Masumoto, N. Kazama, K. Watanabe,Effects of metalloids on the magnetic properties of iron based amorphous alloys, Physica Status Solidi (a), 49(2), K163(1978)
8 A. Makino, A. Inoue, T. Masumoto,Soft magnetic properties of nanocrystalline Fe-M-B(M=Zr, Hf, Nb) alloys with high magnetization, Nanostructured Materials, 6(5-8), 985(1995)
9 A. Makino, M. Bingo, T. Bitoh, K. Yubuta,Improvement of soft magnetic properties by simultaneous addition of P and Cu for nanocrystalline FeNbB alloys, Journal of Applied Physics, 101, 09-N117(2007)
10 A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue,FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 19 Tesla produced by crystallizing hetero-amorphous phase, Materials Transactions, 50, 204(2009)
11 H. Men, L. Y. Cui, T. Kubota, K. Yubuta, A. Makino, A. Inoue,Fe-Rich soft magnetic FeSiBPCu hetero-amorphous alloys with high saturation magnetization, Materials Transactions, 50(6), 1330(2009)
12 A. C.Hsiao, M. E. Mchenry, D. E. Laughlin, M. R. Tamoria, V. G. Harris,Magnetic properties and crystallization kinetics of a Mn-doped FINEMET precursor amorphous alloy, IEEE Transactions on Magnetics, 37(4), 2236(2001)
13 E. Illekov,The crystallization Kinetics of Fe80Si4B16 Metallic Glass, Thermochim. Acta, 280, 289(1996)
14 R. Singhal, A. K. Majumdar,Crystallization of glassy Fe80B20-xSix (0≤x≤12) alloys, Journal of Magnetism and Magnetic Materials, 115(2-3), 245(1992)
15 H. E. Kissinger,Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29(11), 1702(1957)
16 K. Suzuki, M. Kikuchi, A. Makino, T. Masumoto,Changes in microstructure and soft magnetic properties of an Fe86Zr7B6Cu1 amorphous alloy upon crystallization, Materials Transactions, 32(10), 961(1991)
17 Y. R. Zhang, R. V. Ramanujan,Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys, Thin Solid Films, 505(1-2), 97(2006)
18 J. W. Christian, The Theory of Transformation in Metals and Alloys(Oxford, Pergamon Press, 1965)
19 A. Makino, T. Bitoh, A. Inoue, T. Masumoto,Nb-Poor Fe-Nb-B nanocrystalline soft magnetic alloys with small amount of P and Cu prepared by melt-spinning in air, Scripta Materialia, 48(7), 869(2003)
20 A. Makino, H. Men, K. Yubuta, T. Kubota,Soft magnetic FeSiBPCu heteroamorphous alloys with high Fe content, Journal of Applied Physics, 105(1), 013922(2009)
21 F. E. Luborsky, H. H. Liebermann,Crystallization kinetics of Fe-B amorphous alloys, Applied Physics Letters, 33(3), 233(1978)
22 H. Men, L. Y.Cui, T. Kubota, A. Makino, A. Inoue,Fe-Rich soft magnetic FeSiBPCu hetero-amorphous alloys with high saturation magnetization, Materials Transactions, 50(6), 1330(2009)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!