Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 656-662    DOI: 10.11901/1005.3093.2014.572
Current Issue | Archive | Adv Search |
High Efficient Pt Counter Electrode Prepared by One-step Thermal Decomposition for Dye-sensitized Solar Cell
Siqian LI,Jie HUANG,Jian XIE,Jun ZHANG,Cong YE(),Hao WANG
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062, China
Cite this article: 

Siqian LI,Jie HUANG,Jian XIE,Jun ZHANG,Cong YE,Hao WANG. High Efficient Pt Counter Electrode Prepared by One-step Thermal Decomposition for Dye-sensitized Solar Cell. Chinese Journal of Materials Research, 2015, 29(9): 656-662.

Download:  HTML  PDF(2036KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Pt counter electrode was prepared on fluorine-doped tin oxide (FTO) glass by spin-coating and then thermal-decomposition of the precursor of H2PtCl6?6H2O. The influence of the number of spin coating-annealing treatment on the amount of deposited platinum and light transmittance for the electrode, as well as the photovoltaic performance of dye sensitized solar cells assembled with the counter electrode was investigated. It was found that the optimal power conversion efficiency of 6.78% was obtained for cells assembled with Pt/FTO counter electrode after five spin coating-annealing treatments, which was higher than that of the cell assembled with the traditional counter electrode prepared by magnetron sputtering technique. Thereafter, the required concentration and volume of H2PtCl6?6H2O precursor for the process could be further optimized in terms of the optimal number of spin coating-annealing and the amount of deposited platinum on the FTO glass counter electrode to ensure the best power conversion efficiency of dye sensitized solar cells. Furthermore, a novel Pt/FTO counter electrode was prepared by a one-step drop coating-annealing process, which exhibited high transmittance and low deposited platinum and then the power conversion efficiency could reach to 6.92% for cells assembled with such Pt/FTO counter electrode.

Key words:  synthesizing and processing technics      TiO2 nanotube arrays      Pt counter electrode      dye-sensitized solar cell      thermal decomposition      photovoltaic performance     
Received:  08 October 2014     
Fund: *Supported by National Natural Science Foundation of China Nos. 11374090 & 51372075.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.572     OR     https://www.cjmr.org/EN/Y2015/V29/I9/656

Fig.1  XRD spectrum of Pt counter electrode on FTO glass
Fig.2  SEM images of FTO glass (a) and Pt counter electrode on FTO glass for 1 time (b), 3 (c), 5 (d), 7(e) and 9 (f) times spin coating/annealing, respectively
Fig.3  Light transmittance for different spin coating and annealing times
Fig.4  J-V curves of DSSCs based on different Pt counter electrodes
VOC/V JSC/mAcm-2 FF/% h/%
1T-DSSC 0.77 12.17 43.75 4.10
3T-DSSC 0.77 13.14 50.74 5.10
5T-DSSC 0.76 15.55 57.52 6.78
7T-DSSC 0.76 14.88 54.29 6.15
9T-DSSC 0.76 12.34 52.55 4.92
Sputtering-DSSC 0.68 15.85 61.63 6.62
Table1  Photovoltaic performance of DSSCs based on different Pt/FTO counter electrodes
Fig.5  XRD spectrum (a), light transmittance (b), J-V curve of assembled DSSC (c) and planar view SEM image of Pt counter electrode prepared by one-step drop casting/annealing treatment
1 B. O’Regan, M. Gr?tzel,Principle of dye sensitized solar cell, Nature, 353, 737(1991)
2 M. Gr?tzel,Photoelectrochemical cells, Nature, 414, 338(2001)
3 N. Papageorgiou,Counter-electrode function in nanocrystalline photoelectrochemical cell configurations, Coor. Chem. Rev., 248, 1421(2004)
4 W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song,Performance variation of carbon counter electrode based dye-sensitized solar cell, Sol. Energy Mater & Sol. Cells, 92, 814(2008)
5 M. X. Wu, X. Lin, A. Hagfeldtb, T. L. Ma,A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells, Chem. Commun, 47, 4535(2011)
6 Y. D. Wang, M. X. Wu, X. Lin, Z. C. Shi, A. Hagfeldt, T. L. Ma,Several highly efficient catalysts for Pt-free and FTO-free counter electrodes of dye-sensitized solar cells, J. Mater. Chem., 22, 4009(2012)
7 X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, T. Kida, E. Abe,Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal Chem., 570, 257(2004)
8 J. Y. Lin, Y. T. Lin,Electroless platinum counter electrodes with Pt-activated self-assembled monolayer on transparent conducting oxide, Surf. Coat. Tech, 206, 4672(2012)
9 X. L. He, M. Liu, G.J.Yang, S. Q. Fan, C. J. Li,Correlation between microstructure and property of electroless deposited Pt counter electrodes on plastic substrate for dye-sensitized solar cells, Appl. Surf. Sci., 258, 1377(2011)
10 D. C. Fu, P. P. Huang, U. Bach,Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition correlation of nanostructure, catalytic activity and optical properties, Electrochim. Acta, 77, 121(2012)
11 Y. M. Xiao, J. H. Wu, C. X. Cheng, Y. Chen, G. T. Yue, J. M. Lin, M. L. Huang, L. Q. Fang, Z. Lan,Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells, Chin. Sci. Bull., 57, 2329(2012)
12 Y. D. Wang, C. Y. Zhao, D. Qin, M. X. Wu, W. Liu, T. L. Ma,Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells, J. Mater. Chem., 22, 22155(2012)
13 J. Zhang, S. Q. Li, H. Ding, Q. T. Li, B. Y. Wang, X. N. Wang, H. Wang,Transfer and assembly of large area TiO2 nanotube arrays onto conductive glass for dye sensitized solar cells, J. Power Source, 247, 807(2014)
14 J. Zhang, Q. T. Li, S. Q. Li, Y. Wang, C. Ye, P. Ruterana, H. Wang,An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells, J. Power Source, 268, 941(2014)
15 A. Monshi, M. R. Foroughi, M. R. Monshi,Modified scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng., 2, 154(2012)
16 Saito Y,Kubo W, Kitamura T, Wada Y, Yanagida S, I-/I3- redox reaction behavior on poly(3, 4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, J. Photochem Photobiol A: Chem., 164, 153(2004)
17 S. Biallozor, A. Kupniewska,Study on poly(3, 4-ethylenedioxy thiophene) behaviour in the I-/I2 solution, Electrochem. Commun., 2, 480(2000)
18 D. S. Zhang, T. Yoshida, K. Furuta, H. J. Minoura,Hydrothermal preparation of porous nanocrystalline TiO2 electrodes for flexible solar cells, Photochem Photobiol A: Chem., 164, 159(2004)
19 K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata,High-performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 79, 459(2003)
20 M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes,Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnol., 17, 4285(2006)
21 A. Hauch, A. Georg,Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta, 46, 3457(2001)
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[5] MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju. Thermal Decomposition Dynamics of Nylon 66 and Its Composites[J]. 材料研究学报, 2020, 34(8): 599-604.
[6] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[13] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[14] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
[15] TANG Xianyi, WEI Xiaohui, XU Deping, ZHANG Haiyong, HE Xin, XIONG Chu'an, TANG Hanying. Removal of QI from Medium-temperature Coal Tar Pitch and Preparation of Needle Coke through Carbonization[J]. 材料研究学报, 2016, 30(6): 448-456.
No Suggested Reading articles found!