Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 649-655    DOI: 10.11901/1005.3093.2014.553
Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Microstructure and Mechanical Properties of High Nb-TiAl Alloy Sheet
Zhengzhang SHEN,Yongfeng LIANG,Yanli WANG,Guojian HAO,Laiqi ZHANG,Junpin LIN()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhengzhang SHEN,Yongfeng LIANG,Yanli WANG,Guojian HAO,Laiqi ZHANG,Junpin LIN. Effect of Heat Treatment on Microstructure and Mechanical Properties of High Nb-TiAl Alloy Sheet. Chinese Journal of Materials Research, 2015, 29(9): 649-655.

Download:  HTML  PDF(10866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of heat treatment on the microstructure and mechanical properties of a high Nb-containing TiAl alloy sheet was investigated, which was fabricated by directly hot-rolling a packed alloy ingot. The obtained sheet mainly consisted of remnant coarsening lamella, recrystallized γ grains and strip-like β phase along rolling direction. Followed by variant heat treatments, the coarse lamella and β phase were eliminated, and various typical microstructures were appeared, such as duplex, near fully lamellar and fully lamellar ones. Mechanical properties of the sheet with duplex microstructure were tested at room and high temperatures respectively. The results showed that the strength and ductility of the sheet at room temperature were improved after heat treatment. The brittle-ductile transition temperature was in the range of 850-900℃, and the corresponding fracture mode transformed from transgranular fracture to the nucleation and coalescence of voids.

Key words:  metallic materials      high Nb-TiAl alloy      hot-pack rolling      heat treatment      duplex microstructure      mechanical property     
Received:  30 September 2014     
Fund: *Supported by National Basic Research Program of China No.2011CB605501.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.553     OR     https://www.cjmr.org/EN/Y2015/V29/I9/649

No. Heat treatment Microstructure
HT1 HT1-1 1250℃/8 h+900℃/1 h+FC DP
HT1-2 1250℃/16 h+900℃/1 h+FC
HT1-3 1250℃/24 h+900℃ 1 h+FC
HT2 1300℃/1 h+1250℃/4 h+900℃/1 h+FC DP
HT3 1320℃/30 min+900℃/1 h+FC NFL
HT4 1335℃/30 min+900℃/1 h+FC FL
Table 1  Heat treatment processes of high Nb-TiAl alloy sheet
Fig.1  Microstructure of as-cast high Nb-TiAl alloy, (a) low magnification, (b) β phase
Element Lamellar β γ
Ti 43.12 50.13 40.61
Al 47.93 36.66 49.32
Nb 8.89 12.77 9.99
W 0.06 0.44 0.09
Table 2  EDS composition analysis of as-cast high Nb-TiAl alloy (%, atomic fraction)
Fig.2  XRD spectrum of as-cast high Nb-TiAl alloy
Fig.3  Microstructure of sheet after 4-pass hot rolling, (a) low magnification, (b) remnant lamella colony, (c) recrystallized grains, (d) boride
Fig.4  BSE images of high Nb-TiAl alloy sheet after the heat treatment of HT1-1 (a), HT1-2 (b) and HT1-3 (c)
Fig.5  Low (a) and high (b) magnification BSE images of high Nb-TiAl alloy after heat treatment of HT2
Fig.6  BSE images of high Nb-TiAl alloy after the heat treatment of HT3 (a) and HT4 (b)
Fig.7  Tensile engineering stress-strain curves of the as-cast and sheet with DP microstructure at room temperature
Fig.8  The tensile properties of sheet with DP microstructure at elavated temperature
Fig.9  Fracture morphologies of tensile samples in as-cast (a) and DP microstructure (b) at room temperature
Fig.10  Fracture morphologies of sheet with DP microstructure at 850℃ (a) and 900℃ (b)
1 C. T. Liu,Recent advance in ordered intermetallics, Materials Chemistry and Physics, 42(2), 77(1995)
2 Y. W. Kim,Intermetallic alloys based on gamma titanium aluminide, JOM, 41(7), 24(1989)
3 LIU Zicheng,Research on the micro-alloying and the creep properties of high niobium containing TiAl alloys, Doctoral thesis, University of Scienceand Technology Beijing(2000)
3 (刘自成, 高铌TiAl合金成分及组织优化的研究, 博士学位论文, 北京科技大学(2000))
4 ZHANG Junhong,HUANG Boyun, ZHOU Kechao, Pack rolling of TiAl based alloy, The Chinese Journal of Nonferrous Metals, 11, 1055(2001)
4 (张俊红, 黄伯云, 周科朝, 包套轧制制备TiAl 基合金板材, 中国有色金属学报, 11, 1055(2001))
5 MIAO Jiashi,LIN Junpin, WANG Yanli, LIN Zhi, CHEN Guoliang, High temperature pack rolling of a high-Nb TiAl alloy sheet, Rare Metal Materials and Engineering, 33(4), 436(2004)
5 (缪家士, 林均品, 王艳丽, 林 志, 陈国良, 高铌钛铝基合金板材的高温包套轧制, 稀有金属材料与工程, 33(4), 436(2004))
6 V. Seetharaman, S. L. Semiatin,Microstructures and tensile properties of Ti-45.5Al-2Nb-2Cr rolled sheets, Materials Science and EngineeringA, 299, 195(2001)
7 R. Gerling, F. P. Schimansky, A. Stark,Microstructure and mechanical properties of Ti45Al5Nb+(0-0.5C) sheets, Intermetallics, 16, 689(2008)
8 JIANG Yao,HE Yue hui, TANG Yiwu , LI Zhi , HUANG Baiyun, Fabrication of Ti Al alloy sheets by element powder cold roll forming and reactive synthesis, The Chinese Journal of Nonferrous Metals, 14, 1501(2004)
8 (江 垚, 贺跃辉, 汤义武, 李 智, 黄伯云, 元素粉末冷轧成形及反应合成制备TiAl合金板材, 中国有色金属学报, 14, 1501(2004))
9 GAO Jianfeng,XU Xiangjun, LIN Junping, SONG Xiping, WANG Yanli, LIN Zhi, CHEN Guoliang, LI Shusuo, SU Xikong, HAN Yafang, Effect of hot-forging on the room temperature ductility of high Nb containing TiA1 alloy, Rare Metal Materials and Engineering, 34(9), 1497(2005)
9 (高建峰, 徐向俊, 林均品, 宋西平, 王艳丽, 林 志, 陈国良, 李树索, 苏喜孔, 韩雅芳, 热变形高铌TiAl合金室温塑性研究, 稀有金属材料与工程, 34(9), 1497(2005))
10 G. L. Chen, L.C. Zhang, W. J. Zhang,Microstructural stability of lamellar TiAl-based alloys at high temperature, Intermetallics, 7, 1211(1999)
11 S. L. Semiatin, B. W. Shanahan, F. Meisenkothen,Hot rolling of gamma titanium aluminide Foil, Acta Materialia, 58, 4446(2010)
12 A. Bartels, H. Kestler, H. Clemens,Deformation behavior of differently processed γ-titanium aluminides, Materials Science and Engineering A, 329, 153(2002)
13 L. Cheng, H. Chang, B. Tang, H. C. Kou, J. S Li,Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy, Journal of Alloys and Compounds, 552, 363(2013)
14 H.Z. Niu, Y.Y. Chen, S.L. Xiao, L.J. Xu,Microstructure evolution and mechanical properties of a novel beta γ-TiAl alloy, Intermetallics, 31, 225(2012)
15 G. E. Fuchs,Supertransus processing of TiAl-based alloys, Metall. Mater. Trans. A, 29, 27(1998)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!