Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 443-447    DOI: 10.11901/1005.3093.2015.687
ARTICLES Current Issue | Archive | Adv Search |
Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag
TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo**()
School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag. Chinese Journal of Materials Research, 2016, 30(6): 443-447.

Download:  HTML  PDF(706KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well known that the increasing dosage of high Mg-containing V-bearing titanomagnetite, the iron ore was adopted for the iron works at Panxi area of the Southwest China and correspondingly the MgO content (%mass fraction) increased gradually in the blast furnace slag. In view of the above fact, it is meaningful to investigate the influence of MgO content on the viscous flow property of high-Ti blast furnace slag containing high melting point material, such as TiC, TiN, Ti(C, N) etc. Results show that the blast furnace slag containing 20% TiO2 and 14% A12O3 presents the so call "short slag" characteristic with binary basicity R2 in a range of 1.0~1.2, of which the melting temperature increases from 1332℃ to 1364℃ with the increasing MgO content from 8% to 12% . At temperatures above 1450℃, the slag viscosity is lower than 0.3 Pas with a good liquidity, which can meet the requirements for the smooth operation of blast furnace.

Key words:  synthesizing and processing technics      BF slag of high titanium      w(MgO)      viscosity      melting temperature     
Received:  30 November 2015     
ZTFLH:  TF534.1  
Fund: *Supported by National Nature Science Foundation of China No.51174048 and the Fundamental Research Funds for the Central Universities No.N120402011
About author:  **To whom correspondence should be addressed, Tel: (024)83687718, E-mail: weig@smm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.687     OR     https://www.cjmr.org/EN/Y2016/V30/I6/443

R2 w(CaO) w(SiO2) w(TiO2) w(A12O3) w(MgO) w(Ti(C, N)) w*
1.03 26.91% 26.12% 20.19% 13.65% 9.59% 0.33% 3.21%
Table 1  Chemical composition of BF slags (%)
R2 w(CaO) w(SiO2) w(MgO) w(A12O3) w(TiO2) w(Ti(C,N)) w* Slag proportion
1.00 27.52% 27.52% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.00 26.27% 26.27% 10.00% 14.00% 20.00% 0.32% 3.14% 97.63%
1.00 25.33% 25.33% 12.00% 14.00% 20.00% 0.31% 3.03% 94.14%
1.10 28.83% 26.21% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.10 27.56% 25.05% 10.00% 14.00% 20.00% 0.32% 3.07% 95.90%
1.10 26.56% 24.14% 12.00% 14.00% 20.00% 0.31% 2.99% 92.43%
1.20 30.02% 25.02% 8.00% 14.00% 20.00% 0.28% 2.68% 83.42%
1.20 28.77% 23.98% 10.00% 14.00% 20.00% 0.30% 2.95% 91.80%
1.20 27.75% 23.12% 12.00% 14.00% 20.00% 0.29% 2.84% 88.52%
Table 2  Experimental compositions (%)
Fig.1  Schematic diagram of RTW-10 integrated instrument for measurement of melt properties
Fig.2  Effect of w(MgO) on the η-T curve
Fig.3  The mineral composition of BF slag
Fig.4  Effect of w(MgO) on the melting temperature viscosity
Fig.5  Effect of w(MgO) on the melting temperature
1 H. Kim, H. Matsuura, F. Taukihashi, W. Wang, J.M. Dong, I. Sohn, Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate based slags containing 10 mass pct MgO, Metallurgical & Materials Transactions B, 44(1), 5(2012)
2 X. Dai, X. P. Gan, C. F. Zhang, Viscosities of FenO-MgO-SiO2 and FenO-MgO-CaO-SiO2 slags, Trans. Nonferrous Met. Soc. China, 13(6), 1451(2003)
3 B. Zhao, E. Jak, P. C. Hayes, in Tenth International Ferroalloys Congress, Phase Equilibria in High MgO Ferro- and silico-manganese Smelting Slags, edited by Shozo Mizoguchi (Japan, Iron Steel Institute Japan Keidanren Kaikan, 2005) p. 1019
4 B. Zhao, E. Jak, P. C. Hayes, Phase equilibria in high MgO ferro-manganese and silico-manganese smelting slags, ISIJ International, 45(7), 1019(2005)
doi: 10.2355/isijinternational.45.1019
5 V. Nurni, F.Z. Ji, D. S. Chen, S. Seetharaman, Viscosity measurements on some fayalite slags, ISIJ International, 41(7), 722(2001)
6 A. Yazawa, Effects of Oxygen Pressure, Al2O3 and MgO on the liquidus surface of FeOx-SiO2-CaO System, Tetsu- to- Hagane, 86, 1(2000)
7 J. R. Kim, Y. S. Lee, D. J. Mim, S. M. Jung, S. M. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ International, 44(8), 1291(2004)
8 F. M. Shen, X. Jiang, G. S. Wu, G. Wei, X. G. Li, Y. S. Shen, Proper MgO addition in blast furnace operation, ISIJ International, 46(1), 65(2006)
doi: 10.2355/isijinternational.46.65
9 H. Wang, G. B. Qiu, Q. Y. Deng, S.W. Ma, in 3rd International Symposium on High-Temperature Metallurgical Processing, Viscosity Evolution of Blast Furnace Slag Bearing Titanium, edited by Tao Jiang, Jiann-Yang Hwang, Patrick Masset, Onuralp Yucel, Rafael Padilla, Guifeng Zhou, (USA, Wiley-TMS, 2012)p.137
10 DU Hegui, The Principle of the Blast Furnace Smelting Vanadium Titanium Magnetite (Beijing, Science Press, 1996) p.50
(杜鹤桂, 高炉冶炼钒钛磁铁矿原理(北京, 科学出版社, 1996)p.50)
11 WAN Xin, PEI Henian, BAI Chenguang, ZHOU Peitu, Reduction of titanium oxide and thickening of blast furnace slag bearing higher titania, Journal of Chongqing University (Natural Science Edition), 23(5), 36(2000)
(万新, 裴鹤年, 白晨光, 周培土, 钛氧化物还原与钛渣变稠, 重庆大学学报(自然科学版), 23(5), 36(2000))
doi: 10.11835/j.issn.1000-582x.2000.05.010
12 LV Qing, HUANG Honghu, CHEN Shujun, LIU Xiaojie, SUN Yanqin, DING Haichao, Effect of solid carbon and TiC content on the performance of high titanium-bearing slag of blast furnace, Iron Steel Vanadium Titanium, 36(2), 84(2015)
(吕庆, 黄宏虎, 陈树军, 刘小杰, 孙艳芹, 丁海超, 固体碳和TiC含量对含钛高炉渣性能的影响, 钢铁钒钛, 36(2), 84(2015))
13 DU Hegui, DU Gang, The Influence of Ti(C, N) on Smelting in BF, Iron Steel Vanadium Titanium, 34(5), 509(2003)
(杜鹤桂, 杜钢, Ti(C, N)对高炉冶炼的影响, 钢铁钒钛, 12(3), 1(1991))
14 ZHANG Lu, Study on the Rheological Properties and Conductivity of Heterogeneous Phase Titanium-Bearing Metallurgical Slag, Master Degree Thesis, Northeastern University(2013)
(张璐, 非均相含钛冶金熔渣流变特性及导电性研究, 硕士学位论文, 东北大学(2013))
15 MOK Puikun, CHEN Chungshan, An investigation of viscosity, fusibility and mineral constitution of blast-furnace titanoslags, Acta Metallugica Sinica, 7(4), 363(1964)
(莫培根, 陈钧珊, 高炉型钛渣的黏度, 熔化性和矿物组成, 金属学报, 7(4), 363(1964))
16 ZHANG Wei, ZHAO Kai, RAO Jiating, FU Weiguo, CHU Mansheng, Discussion on Standardization of Melt-Property Temperature of Slag, Journal of Iron and Steel Research, 23(1), 16(2011)
(张伟, 赵凯, 饶家庭, 付卫国, 储满生, 炉渣熔化性温度标准化的探讨, 钢铁研究, 23(1), 16(2011))
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[5] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[6] YU Xin, DI Tongtong, SHEN Hangyan. Synthesis of Nano-SnAgCu Solder by Microemulsion Method[J]. 材料研究学报, 2020, 34(4): 299-303.
[7] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[8] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[9] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[10] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[11] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[12] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[13] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[14] TANG Xianyi, WEI Xiaohui, XU Deping, ZHANG Haiyong, HE Xin, XIONG Chu'an, TANG Hanying. Removal of QI from Medium-temperature Coal Tar Pitch and Preparation of Needle Coke through Carbonization[J]. 材料研究学报, 2016, 30(6): 448-456.
[15] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
No Suggested Reading articles found!