Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (5): 394-400    DOI: 10.11901/1005.3093.2014.283
Current Issue | Archive | Adv Search |
Combustion Characteristic in Growth Chamber for Preparation of Single Crystal with Hydro-Oxygen Flame Fusion Method
Xudong LIU(),Xiaoguo BI,Jian TANG,Wei NIU,Yingnan DONG
School of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China
Cite this article: 

Xudong LIU,Xiaoguo BI,Jian TANG,Wei NIU,Yingnan DONG. Combustion Characteristic in Growth Chamber for Preparation of Single Crystal with Hydro-Oxygen Flame Fusion Method. Chinese Journal of Materials Research, 2015, 29(5): 394-400.

Download:  HTML  PDF(1705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combustion characteristic in growth chamber for preparation of single crystal with hydro-oxygen flame fusion method was investigated. The results show that along the centerline of growth chamber a peak temperature 3504.3 K could be reached when the flow rates of oxygen and hydrogen were 6 L/min and 20 L/min respectively. With the increasing hydrogen flow rate, the temperature of the center and the diameter of the central flame increased gradually in the chamber. With the increasing oxygen flow rate, the position of the peak temperature gradually moved down, which downward moved 5 mm when the central oxygen flow rate increased for 1 L/min, while the average temperature rose 230℃ at a distance 110 mm to the nozzle. The diameter of hydrogen distribution circle had little effect on the center and radial temperature distributions, the central oxygen impact and the ignition position of the flame. As a result, the optimal position for single crystal growth could be easily acquired for the preset flow rates of the two gases and .

Key words:  synthesizing and processing technic      flame fusion method      single crystal      growth chamber      combustion characteristic     
Received:  12 June 2014     
Fund: *Supported by National Natural Science Foundation of China No.51472047, and the Project of New Energy Functional Material Preparation Technology Key Laboratory of Shenyang No. F12-260-1-00.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.283     OR     https://www.cjmr.org/EN/Y2015/V29/I5/394

Fig.1  The models for the structure of furnace (a) and nozzle (b)
Fig.2  The calculation model for growth chamber
Fig.3  Temperature distribution for longitudinal section of growth chamber
Fig.4  Temperature distribution for center line of growth chamber
Fig.5  Temperature distribution for wall of growth chamber
Fig.6  The radial temperature distribution in different height at observation hole
Fig.7  Gas composition distribution in growth chamber, (a) H2, (b) O2 and (c) H2O
  
  
  
  
Fig.13  Effects of diameter of circle for distribution of hydrogen on radial temperature in growth chamber
Fig.12  Effects of diameter of circle for distribution of hydrogen on center temperature in growth chamber
1 J. B. Donnet, H. Oulanti, T. Le Huu, M. Schmitt,Sythesis of large crystal diamond using combustion-flame method, Carbon, 44, 374(2006)
2 R. Falckenberg,Growth of Mg-Al Spinel Crystals of Large Diameter Using a Modified Flame Fusion Technique, Journal of Crystal Growth, 29, 195(1975)
3 Hans J. Scheel,Historical aspects of crystal growth technology, Journal of Crystal Growth, 211, 1(2000)
4 Xiao Guo Bi,Xu Dong Liu, Wei Niu, Flame-fusion growth of rutile single crystal, Advanced Materials Research, 535, 2571(2012)
5 H. J. Scheel,Crystal growth technology CGT for energy: saving energy and renewable energy, J. Crystal Growth, 275, 331(2005)
6 F. B. Khambatta, P. J. GielisseM. P. Wilson,Initial thermal model of the flame fusion crystal growth process, Journal of Crystal Growth, 13/14, 710(1972)
7 Joseph A. Adamski,New oxy-hydrogen burner for flame fusion, Journal of Applied Physics, 36(5), 1784(1965)
8 BI Xiaoguo,XIU Zhimeng, MA Weimin, SUN Xudong, Study on grow th of rutile (TiO2) single crystals, Journal of Northeastern U niversity (Natural Science), 25(10), 977(2004)
8 (毕孝国, 修稚萌, 马伟民, 孙旭东, 金红石(TiO2)单晶体的生长研究, 东北大学学报, 25(10), 977(2004))
9 J. G. Bednorz, H. J. Scheel,Flame-Fusion Growth of SrTiO3[J], Journal of Crystal Growth, 41, 5(1977)
10 BI Xiaoguo,XIU Zhimeng, SUN Xudong, ZHAO Hongsheng, CAO Zhongjie, GUO Guoyou, XIAO Jitian, Experimental study on growth conditions of big- bulk rutile crystal, Journal of Synthetic Crystals, 33(2), 244(2004)
10 (毕孝国, 修稚萌, 孙旭东, 赵洪生, 曹忠杰, 郭国有, 肖继田, 大尺寸金红石(TiO2)单晶体生长条件的实验研究, 人工晶体学报, 33(2), 244(2004))
11 BI Xiaoguo,XIU Zhimeng, MA Weimin, SUN Xudong, ZHAO Hongsheng, GUO Guoyou, FU Jie, DING Qian, Study on effect of growth atmosphere and rate on preparation of rutile (TiO2) single crystal, Journal of Synthetic Crystals, 33(4), 657(2004)
11 (毕孝国, 修稚萌, 马伟民, 孙旭东, 赵洪生, 郭国友, 付 杰, 丁 千, 生长气氛和速度在金红石(TiO2)单晶体生长中的作用研究, 人工晶体学报, 33(4), 657(2004))
12 Ansys Fluent 12.0 Theory Guide,Fluent 12.0 Theory Guide, Ansys Inc., 4-13(2009)
[1] ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(6): 417-422.
[2] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[3] KONG Yafei, LUO Xinghong, LI Yang, LIU Shi. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 770-780.
[4] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[5] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[6] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[7] LIANG Shuang, LIU Zhixin, LIU Lirong, LIANG Jinguang, JI Liangbo, SHAO Huayang. Effect of Ru on Creep Properties of a High Tungsten Containing Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(9): 694-702.
[8] HUANG Yaqi, WANG Dong, LU Yuzhang, XIONG Ying, SHEN Jian. Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413[J]. 材料研究学报, 2021, 35(7): 510-516.
[9] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[10] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[11] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[12] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[13] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[14] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[15] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
No Suggested Reading articles found!