Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 770-780    DOI: 10.11901/1005.3093.2022.451
ARTICLES Current Issue | Archive | Adv Search |
Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy
KONG Yafei1,2, LUO Xinghong1,2(), LI Yang1, LIU Shi1,2
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

KONG Yafei, LUO Xinghong, LI Yang, LIU Shi. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy. Chinese Journal of Materials Research, 2023, 37(10): 770-780.

Download:  HTML  PDF(21742KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification behavior of a Ni-based Ni-Cr-Al-W-Ta single crystal superalloy in normal gravity (1g) and microgravity (μg) conditions were comparatively investigated by using a 50 metre-high drop tube. The solidification microstructure of the alloy was observed using optical metalloscopy (OM), and the primary and secondary dendrite spacing of the samples were measured and counted by using an image analysis software. Scanning electron microscope (SEM-EDS) was used to determine the chemical compositions of dendrite trunk and interdendrite at different locations, and then the microsegregation coefficient was calculated. The results show that the dendrite characteristics and microsegregation are significantly different in 1g and μg conditions respectively. The primary and secondary dendrite spacing tested in 1g sample are larger than those in μg sample, and the difference of primary dendrite spacing between 1g and μg sample gradually increases with the increase of solidification distance, while the difference of secondary dendrite spacing does not change much. With the process of solidification, the contents of Ta, Cr and Al between dendrites tested in μg sample show a trend of increasing obviously at first and then decreasing slightly, while the W content has a trend of decreasing gradually, and the interdendritic liquid phase density shows a trend of decreasing slightly. The distribution of the Ta, Cr and Al content between dendrites tested in 1g sample are basically similar to those in μg sample, while the distribution of W is significantly different, showing an upward trend in most solidification stages, resulting in the increase of the interdendritic liquid phase density just along the opposite direction of gravity. These results indicate that the convection effect caused by the solute density difference at the front of solidification interface was weak in normal gravity condition, which was not the main reason for the increase of dendrite spacing. It is believed that the main reason should be related to the reduction of temperature gradient caused by thermal convection at the front of solidification interface.

Key words:  metallic materials      Ni-based single crystal superalloy      dendrite growth      microsegregation      microgravity      solidification     
Received:  22 August 2022     
ZTFLH:  TG132.32  
Fund: Space Application System of China Manned Space Program
Corresponding Authors:  LUO Xinghong, Tel: 13940023803, E-mail: xhluo@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.451     OR     https://www.cjmr.org/EN/Y2023/V37/I10/770

CrAlTaWNi
10628Bal.
Table 1  Chemical compositions of the alloy (mass fraction, %)
Sample

Heating

time

/ s

Heating

power

/ kW

Heating

length

/ mm

Cooling condition
1g160.610Stand still for 3.2 s
μg160.610Free fall
Table 2  Parameters of solidification experiments under normal gravity and microgravity
Fig.1  Temperature-time curves of 1g sample and μg sample
Fig.2  Longitudinal and transverse section microstructure of (a) 1g sample, (b) μg sample
Fig.3  Morphology of dendrites on transverse sections of (a, c, e) 1g sample and (b, d, f) μg sample; location distance away from the melting interface (a, b) 1 mm, (c, d) 3 mm, (e, f) 5 mm
Fig.4  Secondary dendrite arms on longitudinal sections of (a, c, e) 1g sample and (b, d, f) μg sample; location distance away from the melting interface (a, b) 1 mm, (c, d) 3 mm, (e, f) 5 mm
Fig.5  Dendrite growth characteristics at different locations of 1g and μg sample (a) primary dendrite spacing, (b) secondary dendrite spacing
Fig.6  Element distribution mappings of the epitaxial growth regions in (a) 1g sample, (b) μg sample
Element / %,mass fraction1g sampleμg sample
Dendrite trunk / cdInterdendrite / ciksegDendrite trunk / cdInterdendrite / cikseg
Al5.267.290.7225.687.030.808
Cr9.3612.200.7679.4212.030.783
Ta1.813.780.4791.363.280.415
W10.994.202.61711.225.552.022
Ni72.5872.53-72.3272.11-
Table 3  Compositions of dendrite trunk and interdendritic area in 1g and μg samples
Fig.7  Distributions of elements in final solidification liquid phase along the growth direction on the axis (a) Al element, (b) Cr element, (c) Ta element and (d) W element
Fig.8  Microsegregation coefficient of elements along axial direction in 1g and μg sample (a) Al element,(b) Cr element,(c) Ta element and (d) W element
Fig.9  Schematic diagram of convection in the alloy melt and interdendritic liquid phase
Fig.10  Relationship between primary dendrite spacing and dendrite growth velocity
Fig.11  Density variation of final solidification liquid phase along the growth direction
1 Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
胡壮麒, 刘丽荣, 金 涛 等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
2 Wang L, Dong J X, Yang C J, et al. Mechanisms for macro segregation freckles and their criteria [J]. Foundry Technol., 2007, 28(5): 585
王 玲, 董建新, 杨春军 等. 宏观偏析黑斑形成机理及其判据 [J]. 铸造技术, 2007, 28(5): 585
3 Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2004, 373A(1-2) : 255
4 Beckermann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A(10) : 2545
5 Sun D K, Zhu M F, Yang C R, et al. Modelling of dendritic growth in forced and natural convections [J]. Acta Phys. Sin., 2009, 58(): 285
孙东科, 朱鸣芳, 杨朝蓉 等. 强制对流和自然对流作用下枝晶生长的数值模拟 [J]. 物理学报, 2009, 58(): 285
6 Zhou B H, Jung H, Mangelinck-Noël N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys [J]. Adv. Space Res., 2008, 41(12): 2112
doi: 10.1016/j.asr.2007.06.038
7 Banaszek J, McFadden S, Browne D J, et al. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification [J]. Metall. Mater. Trans., 2007, 38A(7) : 1476
8 Ma D X, Bührig-Polaczek A. Avoiding grain defects in single crystal components by application of a heat conductor technique [J]. Int. J. Mater. Res., 2009, 100(8): 1145
doi: 10.3139/146.110160
9 Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, 413-414A: 571
10 Zhou Y F, Li X Y, Bai S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals [J]. J. Cryst. Growth, 2010, 312(6): 775
doi: 10.1016/j.jcrysgro.2009.12.061
11 Ostrogorsky A G, Marin C, Volz M, et al. Initial transient in Zn-doped InSb grown in microgravity [J]. J. Cryst. Growth, 2009, 311(12): 3243
doi: 10.1016/j.jcrysgro.2009.03.036
12 De Wilde J, Nagels E, Lemoisson F, et al. Unconstrained growth along a ternary eutectic solidification path in Al-Cu-Ag: preparation of a MAXUS sounding rocket experiment [J]. Mater. Sci. Eng., 2005, 413-414A: 514
13 Thi H N, Dabo Y, Drevet B, et al. Directional solidification of Al-1.5 wt% Ni alloys under diffusion transport in space and fluid-flow localisation on earth [J]. J. Cryst. Growth, 2005, 281(2-4): 654
doi: 10.1016/j.jcrysgro.2005.04.061
14 Luo X H, Feng S B, Li Y. Solidification of AlCuMgZn single crystal in space [J]. Chin. J. Space Sci., 2016, 36(4): 445
doi: 10.11728/cjss2016.04.445
罗兴宏, 封少波, 李 洋. A1CuMgZn单晶合金的空间凝固 [J]. 空间科学学报, 2016, 36(4): 445
15 Kong Y F, Luo X H, Li Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8 wt.% Cu alloy [J]. Microgravity Sci. Technol., 2021, 33(6): 72
doi: 10.1007/s12217-021-09913-4
16 Feng S B, Luo X H. Dendrite growth of SRR99 Nickel-base single crystal superalloy under microgravity condition formed by long drop tube [J]. Chin. J. Rare Metals, 2012, 36(3): 341
封少波, 罗兴宏. SRR99镍基单晶高温合金在落管微重力环境下的枝晶生长行为研究 [J]. 稀有金属, 2012, 36(3): 341
17 Zhang N N, Luo X H, Feng S B, et al. Mechanism of gravity effect on solidification microstructure of eutectic alloy [J]. J. Mater. Sci. Technol., 2014, 30(5): 499
doi: 10.1016/j.jmst.2013.11.009
18 Yang C B, Liu L, Zhao X B, et al. Dendrite arm spacings and microsegregations in 〈001〉 and 〈011〉 orientated single crystal superalloys DD407 [J]. Acta Metall. Sin., 2011, 47(10): 1246
杨初斌, 刘 林, 赵新宝 等. 〈001〉和〈011〉取向DD407单晶高温合金枝晶间距和微观偏析 [J]. 金属学报, 2011, 47(10): 1246
doi: 10.3724/SP.J.1037.2011.00142
19 Hu H Q. Principle of Metal Solidification 2nd ed. [M]. Beijing: China Machine Press, 2000
胡汉起. 金属凝固原理 2版 [M]. 北京: 机械工业出版社, 2000
20 Lipnicki Z, Weigand B. An experimental and theoretical study of solidification in a free-convection flow inside a vertical annular enclosure [J]. Int. J. Heat Mass Transfer, 2012, 55(4): 655
doi: 10.1016/j.ijheatmasstransfer.2011.10.044
21 Hunt J D. Solidification and Casting of Metals [M]. London: The Metals Society, 1979
22 Wills V A, McCartney D G. A comparative study of solidification features in nickel-base superalloys: microstructural evolution and microsegregation [J]. Mater. Sci. Eng., 1991, 145A(2) : 223
23 Yeoh G H, De Vahl Davis G, Leonardi E, et al. A numerical and experimental study of natural convection and interface shape in crystal growth [J]. J. Cryst. Growth, 1997, 173(3-4): 492
doi: 10.1016/S0022-0248(96)00851-2
24 Mullis A M. The effects of fluid flow on secondary arm coarsening during dendritic solidification [J]. J. Mater. Sci., 2003, 38(11): 2517
doi: 10.1023/A:1023977723475
25 Mukai K, Li Z S, Mills K C. Prediction of the densities of liquid Ni-based superalloys [J]. Metall. Mater. Trans., 2005, 36B(2) : 255
26 Li Z S, Mills K C, McLean M, et al. Measurement of the density and surface tension of Ni-based superalloys in the liquid and mushy states [J]. Metall. Mater. Trans., 2005, 36B(2) : 247
27 Feng S B, Zhang N N, Luo X H. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy [J]. Acta Metall. Sin., 2012, 48(5): 541
doi: 10.3724/SP.J.1037.2012.00037
封少波, 张楠楠, 罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响 [J]. 金属学报, 2012, 48(5): 541
doi: 10.3724/SP.J.1037.2012.00037
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!