Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (3): 221-226    DOI: 10.11901/1005.3093.2014.279
Current Issue | Archive | Adv Search |
Impacts of Processing Parameters on Morphology of Pores for Anodic Oxide Film Prepared on Aluminum Foil by Twice Anodization
Xin LI,Bingxi LI,Yucheng LUO,Yangping LI()
The State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Cite this article: 

Xin LI,Bingxi LI,Yucheng LUO,Yangping LI. Impacts of Processing Parameters on Morphology of Pores for Anodic Oxide Film Prepared on Aluminum Foil by Twice Anodization. Chinese Journal of Materials Research, 2015, 29(3): 221-226.

Download:  HTML  PDF(5296KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum foil was anodic oxidized by a two-step anodization process in oxalic acid solutions. While the influence of processing parameters, such as voltage, time and solution concentration, for the 1st and 2nd steps of anodization process on the characteristics of pores of the anodic aluminum oxides (AAO) films was investigated. Results show that for the 1st anodization, the pores spacing increases with the rising voltage, yet the anodization time and the concentration of oxalic acid solution have almost no influence; for the 2nd anodization process, the pores spacing doesn’t change when varying the voltage, the anodization time and the concentration of solution, but the pore diameter rises greatly with the rise of the voltage. The pores of the AAOs films are well arranged in a form of hexagonal array. Furthermore, the shape of the pores changes slightly when increasing the voltage for the 2nd anodization. High concentration (up to 0.4 mol/L) oxalic acid solution for the 2nd anodization resulted in an oriented piercing of the pore’s wall, even a dissolving of the AAO layer, but the pores arrangement was not affected.

Key words:  inorganic non-metallic materials      AAO      two-step anodization      oxalic acid      characteristics of pore     
Received:  06 June 2014     
Fund: *Supported by Natural Science Basic Research Plan of Shaanxi Province No. 2013JM8033.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.279     OR     https://www.cjmr.org/EN/Y2015/V29/I3/221

Group t/h U/V CB/mol/L
1# a 2 50 0.3
b 4
c 8
2# a 4 40 0.3
b 50
c 60
3# a 4 50 0.2
b 0.3
c 0.4
Table 1  Anodic oxidation parameters for AAO fabrication
Fig.1  SEM images for the AAO samples after the first-step oxidation (a) and corroding off the first oxidation layer (b)
Fig.2  SEM images for the AAO samples prepared under the first-step oxidation time of 2 h (a), 4 h (b) and 8 h (c) with the other parameters kept the same
Fig.3  SEM images for the AAO samples prepared under the first-step oxidation voltages of 40 V (a), 50 V (b) and 60 V (c) with the other parameters kept the same
Fig.4  SEM images for the AAO samples prepared under the oxalic acid concentrations of 0.2 (a), 0.3 (b) and 0.4 (c) mol/L for first-step oxidation with the other parameters kept the same
Fig.5  SEM images for the AAO samples prepared under the second-step oxidation time of 2 h (a), 4 h (b) and 8 h (c) with the other parameters kept the same
Fig.6  SEM images for the AAO samples prepared under the second-step oxidation voltages of 40 V (a), 50 V (b) and 60 V (c) with the other parameters kept the same
Fig.7  SEM images for the AAO samples prepared under different oxalic acid concentrations of 0.2 (a), 0.3 (b) and 0.4 (c) mol/L for second-step oxidation with the other parameters kept the same
Fig.8  Pore size (a), pore spacing (b) and pore wall thickness (c) of the AAOs as functions of the first-step and second-step oxidation parameters
1 F. Keller, M. S. Hunter, D. L. Robinson,Structural features of oxide coatings on aluminum, J. Electrochem. Soc., 100(9), 411(1953)
2 S. J. Park, M. S. Cho, J. D. Nam, I. H. Kim, H. R. Choic, J. C. Kooc, Y. Lee,The linear stretching actuation behavior of polypyrrole nanorod in AAO template, Sensors and Actuators B: Chemical, 135(2), 592(2009)
3 Y. Cho, W. Lee, Y. K. Jhon, J. Genzer, K. Char,Polymer nanotubules obtained by layer-by-layer deposition within AAO-membrane templates with sub-100-nm pore diameters, Small, 6(23), 2683(2010)
4 T. Kumeria, M.D. Kurkuri, K.R. Diener, L. Parkinson, D. Losic,Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells, Biosensors and Bioelectronics, 35(1), 167(2012)
5 W. Shi, Y.Q. Shen, D. T. Ge, M. Q. Xue, H. H. Cao, S. Q. Huang, J. X. Wang, G. L. Zhang, F. B. Zhang,Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation, Journal of Membrane Science, 325(2), 801(2008)
6 J. S. Jung, Y. K. Jung, E. M. Kim, S. H. Min, J. H. Jun, L. M. Malkinski, Y. Barnakov, L. Spinu, K. Stokes,Synthesis and magnetic characterization of ZnFe2O4 nanostructure in AAO template, IEEE Transactions on Magnetics, 41(10), 3403(2005)
7 W. J. Stepniowski, Z. Bojar,Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures study of the influence of anodization conditions on the alumina structural features, Surface and Coatings Technology, 206(2-3), 265(2011)
8 HU Guofeng,ZHANG Haiming, LI Yujie, Effect of anodization time and temperature on fabrication of AAO template on silicon substrate, Journal of Optoelectronics Laser, 21(5), 706(2010)
8 (胡国锋, 张海明, 李育洁, 氧化时间和温度对Si基AAO模板制备的影响, 光电子激光, 21(5), 706(2010))
9 A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek,Effect of processing parameters on pore structure and thickness of anodic aluminum oxide(AAO) tubular membranes, Journal of Membrane Science, 319(1-2), 192(2008)
10 J. H. Zhou, J. P. He, G. W. Zhao, C. X. Zhang, J. S. Zhao, H. P. Hu,Alumina nanostructures prepared by two-step anodization process, Transactions of Nonferrous Metals Society of China (English Edition), 17(1), 82(2007)
11 Y. Zhen, H. Wang, X. R. Jia, H. W. Jiang, J. T. Liu,The effect of multi-step anodic oxidation, Materials Science Forum, 694, 585(2011)
12 H. Masuda, K. Fukuda,Ordered metal nanohole arrays made by two-step replication of honeycomb structure, Science, 268(5216), 1466(1995)
13 A. P. Li, F. Muller, A. Birner, K. Nielsch, U. G?sele,Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023(1998)
14 G. W. Meng, Y. J. Jung, A. Y. Cao, R. Vajtai, P. M. Ajayan,Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proc. Natl. Acad. Sci. USA, 102(20), 7074(2005)
15 H. Masuda,H Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters, 71(19), 2770(1997)
16 YAO Suwei,KONG Yaxi, ZHANG Lu, Forming mechanisms of highly ordered porous anodic aluminum oxide membranes, Journal of Functional Material, 1(37), 113(2006)
16 (姚素薇, 孔亚西, 张 璐, 高度有序氧化铝膜形成机理的探讨, 功能材料, 1(37), 113(2006))
17 H. Masuda, A. Abe1, M. Nakao, A. Yokoo, T. Tamamura, K. Nishio,Ordered mosaic nano composites in anodic porous aluminum, Advanced Material, 15(2), 161(1997)
18 J. P. O'Sullivan, G. C. Wood, The morphology and mechanism of formation of porous anodic films on aluminiun. Proc. R. Soc. Lond. A, 317(1531), 511(1970)
19 V. P. Parkhutik, V. I. Shershulsky,Theoretical modeling of porous oxide growth on aluminum, J. Phys. D: Appl. Phys., 25(8), 1258(1992)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!