Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (10): 769-774    DOI: 10.11901/1005.3093.2014.213
Current Issue | Archive | Adv Search |
Cytocompatibility of PCL/PVP Composite Nanofibrous Scaffolds
Shuqiong LIU1,Xiufeng XIAO2,**()
1. Ecology and Resource Engineering, Wuyi University, Wuyishan 354300
2. College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007
Cite this article: 

Shuqiong LIU,Xiufeng XIAO. Cytocompatibility of PCL/PVP Composite Nanofibrous Scaffolds. Chinese Journal of Materials Research, 2014, 28(10): 769-774.

Download:  HTML  PDF(3934KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By using polycarpolactone (PCL) and polyvinylpyrrolidone (PVP) as raw materials, a series of nanofibrous scaffolds were fabricated by thermally induced phase separation in a dioxane/water system. The effect of aging temperature, PVP content and different ratios of dioxane to water on the morphology of nanofibrous scaffolds was investigated. The effect of PVP content on the biological activity and hydrophilic performance of the prepared nanofibrous scaffolds were also examined. The results show that aging process played a crucial role in forming the unique nanofibrous structure. The solvent system and the PVP content affect the nanofibrous structure, peculiarly; the nanofibrous structure would disappear gradually with the increasing PVP content. The result of the water absorption shows that the hydrophilic performance of the nanofibrous stent increases with the increasing PVP content. Furthermore, the test of biological activity shows that there exists crystallite carbonate hydroxyapatite in the scaffolds, indicating that the PCL/PVP nanofiberous scaffolds have a good biological activity, and which may much rapidly facilitate the forming of crystallite carbonate hydroxyapatite rather than the merely PCL ones.

Key words:  organic polymer materials      polycarpolactone      polyvinylpyrrolidone      aging      nanofibrous      phase separation     
Received:  25 April 2014     
Fund: *Supported by National Nature Science Foundation of China No.30970887 and Young Teachers Foundation of Wuyi University No.xq201102.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.213     OR     https://www.cjmr.org/EN/Y2014/V28/I10/769

Fig.1  Scanning electron micrographs of PVP/PCL scaffolds prepared from different condition (a) without aging; (b) with aging at 0℃ for 3 h
Fig.2  Scanning electron micrographs of PCL/PVP scaffolds prepared from different weight ratio of dioxane/ water (a) 88/12; (b) 90/10; (c) 85/15
Fig.3  Scanning electron micrographs of PCL/PVP scaffolds prepared with different PVP ratio (a) 0%; (b) 5%; (c) 10%; (d) 15%; (e) 20%; (f) 25%; (g) 30%
Fig.4  Scanning electron micrographs of PCL/PVP scaffold with with different ratio of PVP immersion in SBF with 14 d (a) 30%; (b) 20%; (c) 0%
Fig.5  Scanning electron micrographs of the PCL/PVP scaffold immersion in SBF with the ratio of PVP is 20%. (a) 4 d; (b) 7 d; (c) 14 d
Fig.6  FTIR of PCL/PVP (30%) scaffold after immersed in SBF for (a) 0 d and (b) 14 d
Mass fraction of PVP (%) Gelation temperature (℃) Mass ratio of dioxane /water Porosity (%) Water absorption rate (%)
0 5 10 15 20 25 30 10 10 10 10 10 0 0 0 0 0 0 0 -4 -6 0 0 90/10 90/10 90/10 90/10 90/10 90/10 90/10 90/10 90/10 88/12 85/15 90/10 83.70 92.19 90.48 89.91 84.01 91.47 91.61 90.47 83.23 82.77 83.79 90.69 10.13 17.42 19.64 24.11 40.09 41.83 42.29
Table 1  Porosity and water absorption rate of different condition scaffold
1 Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P, In vitro biocompatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds, Biomacromolecules, 8, 1587(2007)
2 Aihemat, Wang ZB, Zhu L, Application of biodegradable polycaprolactone in medicine, Biomedical Engineering Foreign Medical Sciences, 28(1), 19(2005)
3 Shor L, Güceri S, Wen X, Gandhi M, Sun W, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro, Biomaterials, 28(35), 5291(2007)
4 Baker SC, Rohman G, Southgate J, Cameron NR, The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering, Biomaterials, 30(7), 1321(2009)
5 Ma T F, Shi T J, Properties, Synthesis and applications of PVP, Applied Chemical Industry, 31(3), 16(2002)
5 (马婷芳, 史铁钧, 聚乙烯吡咯烷酮的性能、合成及应用, 应用化工, 31(3), 16(2002))
6 Chen X B, A?Study?of?Preparation?of?PCL/PVP?Blend?Films?and Their?Properties, Journal?of?Wuyi?University (Natural?Science?Edition), 25(2), 43(2011)
6 (陈向标,PCL/PVP共混膜的制备与性能研究, 五邑大学学报(自然科学版), 25(2), 43(2011))
7 Liu S Q, Xiao X F, Liu R F, Lin Y H, Zhong Z Y, Jiao J J, Fabrication of poly(L-lactic acid) nanofibrous scaffolds by thermally induced phase separation, chemical Journal of Chinese universities, 32(2), 372(2011))
7 (刘淑琼, 肖秀峰, 刘榕芳, 林月红, 钟章裕, 焦简金, 热致相分离制备聚乳酸纳米纤维支架, 高等学校化学学报, 32(2), 372(2011))
8 Liu S Q, Xiao X F, Liu R F, Zhong Z Y, Jiao J J, Fabrication of polycaprolactone nanofibrous scaffolds by thermally induced phase separation, Chemical Industry and Engineering Progress, 30(5), 1059(2011)
8 (刘淑琼, 肖秀峰, 刘榕芳, 钟章裕, 焦简金, 相分离制备聚己内酯纳米纤维支架的工艺探讨, 化工进展, 30(5), 1059(2011))
9 Song C X, Wang P Y, Sun H H, Y J, Cui X M, Shi R W, The in vivo degradation, adsorption and excrction of poly(ε-caprolactone), J Biomed Eng, 17(1), 25(2000)
9 (宋存先, 王彭延, 孙洪范, 施化莲, 杨菁, 崔秀敏, 史瑞文, 聚己内酯在体内的降解、吸收和排泄, 生物医学工程学杂志, 17(1), 25(2000))
10 Cuneyt TA, Synthesis of biomimetic Ca hydroxyapatite powders at 37℃ in synthetic body fluids, Biomaterials, 21, 1429(2000)
11 Woo KM, Jun JH, Chen VJ, Seo JY, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX, Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization, Biomaterials, 28(2), 335(2007)
12 Hua FJ, Park TG, Lee DS, A facile preparation of highly interconnected macroporous PLGA scafolds by liquid liquid phase separation of a PLGA-dioxane-water ternary system, Polymer, 44(6), 1911(2003)
13 He LM, Zhang YQ, Zeng X, Quan DP, Liao SS, Zeng YS, Lu J, Ramakrishna S, Fabrication and characterization of poly(L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system, Polymer, 50(16), 4128(2009)
14 Xu F, Wang D W, Chen S F, Wang W H, Zhou C H, Cui F Z, Zhang B, Preliminary study for vascular tissue engineering by electrospinning PLLA/PVP nanofiber films, Journal of Southeast University (Medical Science Edition), 30(3), 391(2011)
14 (徐飞, 王大伟, 陈双峰, 王伟华, 周长辉, 崔福斋, 张彬, 电纺PLLA/PVP纳米纤维膜材料用于血管组织工程的前期研究, 东南大学学报(医学版), 30(3), 391(2011))
15 Yang F, Wolke J G C, Jansen J A, Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering, Chemical Engineering Journal, 137(1), 154(2008)
16 Yamaguchi, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J, Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites, Journal of Biomedical Materials Research, 55(1), 20(2001)
17 Mo L R, Li Y B, Lv G Y, Study on nano-hydroxyapatite crystals synthesized under different conditions, Chemical Research and Application, 18(3), 230(2006)
17 (莫利蓉, 李玉宝, 吕国玉, 不同条件下合成的纳米羟基磷灰石晶体的性能研究, 化学研究与应用, 18(3), 230(2006))
18 Liu Y, Zhong K N, Hu W Y, Influences of Synthetic Conditions on the Characteristics of Hydroxyl-Apatite Synthesised by Sol-gel Method, Materials Science & Engineering, 15(1), 63(1997)
18 (刘羽, 钟康年, 胡文云, 溶胶-凝胶法合成条件与羟基磷灰石特征的关系, 材料科学与工程, 15(1), 63(1997))
19 Huang Z L, Wang D W, Liu Y, Zhang Y, Xu H Y, FT-IR Investigation on Crystal Chemistry of Various CO32- -Substituted Hydroxyapatite Solid Solution, Chinese Journal of Inorganic Chemistry, 18(5), 469(2002)
19 (黄志良, 王大伟, 刘羽, 张昱, 胥焕岩,不同类型的CO32-替换羟基磷灰石固溶体晶体化学FT-IR研究, 无机化学学报, 18(5), 469(2002))
20 Han J M, Li Y B, Liang X J, Comparison of compositional and structural characterizations of synthetic nano-hydroxyapatite and mineral phase from human teet, Jouranl of Functional Materials, 36(7), 1069(2005)
20 (韩纪梅, 李玉宝, 梁新杰, 纳米羟基磷灰石与牙无机质的比较研究, 功能材料, 36(7), 1069(2005))
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[3] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[4] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[5] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[6] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[8] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[9] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[10] JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. 材料研究学报, 2022, 36(11): 845-849.
[11] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[13] WANG Peng, LU Xilong, CAO Chun-e, CHEN Yunxia, SHEN Huarong, ZHANG Xu. Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit[J]. 材料研究学报, 2021, 35(9): 657-666.
[14] LIAO Zexin, LI Chengbo, LIU Shengdan, TANG Jianguo, HUANG Chuanyan, ZHU Xianyan. Effect of Post Aging on Mechanical Properties of Friction Stir Welded 7046 Aluminum Alloy[J]. 材料研究学报, 2021, 35(7): 543-552.
[15] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
No Suggested Reading articles found!