|
|
Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model |
Yao SHI,Qing WANG( ),Qun LI,Chuang DONG |
School of Materials Science and Engineering, Key Laboratory of Materials Modification, Ministry of Education, Dalian University of Technology, Dalian 116024 |
|
Cite this article:
Yao SHI,Qing WANG,Qun LI,Chuang DONG. Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model. Chinese Journal of Materials Research, 2014, 28(8): 594-600.
|
Abstract The composition characteristics of reduced activation ferritic/martensitic (RAFM) steels were investigated using a cluster-plus-glue-atom model. The basic cluster formula [Cr-Fe14](Cr0.5Fe0.5) was determined, where the cluster part [Cr-Fe14] is a rhombic dodecahedron centered by Cr and surrounded by 14 Fe atoms. According to the principle related with self-consistent magnification of cluster formula and similar element substitution, two multi-component alloys were designed by adding V, Mn, Mo, W, Nb and C into [Cr-Fe14](Cr0.5Fe0.5) i.e.[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1. Alloy rods with a diameter of 6 mm were prepared by copper mould suction casting method, then normalized at 1323 K for 0.5 h and tempered at 1023 K for 1 h, both followed by water-quenching. The experimental results revealed that the substitutional solid solution alloys without C exhibit a monolithic ferrite microstructure and that of the other serial alloys with C varies with alloying elements and their contents. The microhardness (HV) of alloys changes with microstructures, and furthermore, while the HV of substitutional solid solution alloys decreases monotonously with the increase of the valence electron concentration per volume VEC/Ra3.
|
Received: 24 March 2014
|
Fund: *Supported by National Natural Science Foundation of China No. 51171035, ShenGu Research Fund, and the Fundamental Research Funds for the Central Universities No.DUT14LAB12. |
1 | E. E. Bloom, S. J. Zinkle, F.W. Wiffen,Materials to deliver the promise of fusion power – progress and challenges, Journal of Nuclear Materials, 329, 12(2004) | 2 | A. Kohyama, A. Hishinuma, D. S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich,Low-activation ferritic and martensitic steels for fusion application, Journal of Nuclear Materials, 233, 138(1996) | 3 | K. Ehrlich, S. W. Cierjacks, S. Kelzenberg, A. M?slang, The Development of Structural Materials for Reduced Long-Term Activation (ASTM Special Technical Publications, STP 1270, 1996)p.1109 | 4 | R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, M. Victoria,Ferritic/martensitic steels–overview of recent results, Journal of Nuclear Materials, 307, 455(2002) | 5 | R. L. Klueh, M. A. Sokolov. Mechanical properties of irradiated 9Cr–2WVTa steel with without nickel,9Cr–2WVTa steel with and without nickel, Journal of Nuclear Materials, 367, 102(2007) | 6 | R. Lindau, A. M?slang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A. F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Sch?ublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz,Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Engineering and Design, 75, 989(2005) | 7 | HUANG Qunying,YU Jinnan, WAN Farong, LI Jiangang, WU Yican, The development of low activation martensitic steels for fusion reactor, Chinese Journal of Nuclear Science and Engineering, 24, 56(2004) | 7 | (黄群英, 郁金南, 万发荣, 李建刚, 吴宜灿, 聚变堆低活化马氏体钢的发展, 核科学与工程, 24, 56(2004)) | 8 | Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao,Progress in development of China Low Activation Martensitic steel for fusion application, Journal of Nuclear Materials, 367, 142(2007) | 9 | A. L. Schaeffler,Constitution diagram for stainless steel weld metal, Metal Progress, 56(11), 680(1949) | 10 | R. L. Klueh, N. Hashimoto, P. J. Maziasz,Nano scale nitride particle strengthened high temperature wrought ferritic and martensitic steels, United States Patent US7520942 B2(2009) | 11 | C. Dong, Q. Wang, J. B. Qiang, Y. M. Wang, N. Jiang, G. Han, Y. H. Li, J. WuJ. H. Xia,From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses, Journal of Physics D: Applied Physics, 40(15), R273(2007) | 12 | HAO Chuanpu,WANG Qing, MA Rentao, WANG Yingmin, QIANG Jianbing, DONG Chuang, Cluster-plus-glue-atom model in bcc solid solution alloys, Acta Physica Sinica, 60(11), 116101-1(2011) | 12 | (郝传璞, 王 清, 马仁涛, 王英敏, 羌建兵, 董 闯, 体心立方固溶体合金中的“团簇+连接原子”结构模型, 物理学报, 60(11), 116101-1(2011)) | 13 | Q. Wang, C. J. Ji, Y. M. Wang, J. B. Qiang, C. Dong,β-Ti alloys with low Young’s moduli interpreted by cluster-plus-glue-atom model, Metallurgical and Materials Transactions A, 44(4), 1872(2013) | 14 | MA Rentao,HAO Chuanpu, WANG Qing, REN Mingfa, WANG Yingmin, DONG Chuang, Cluster-plus-glue-atom model and composition design of BCC Ti-Mo-Nb-Zr solid solution alloys with low young’s modulus, Acta. Metall. Sin., 46, 1034(2010) | 14 | (马仁涛, 郝传璞, 王 清, 任明法, 王英敏, 董 闯, 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计, 金属学报, 46, 1034(2010)) | 15 | WANG Qing,GUO Xiaolei, ZHANG Ruiqian, WANG Yingmin, DONG Chuang, JI Chunjun, Composition design of high-strength ferritic aging stainless steels, Transactions of materials and heat treatment, 35, 72(2014) | 15 | (王 清, 郭晓雷, 张瑞谦, 王英敏, 董 闯, 冀春俊, 高强铁素体时效不锈钢成分设计, 材料热处理学报, 35, 72(2014)) | 16 | A. Takeuchi, A. Inoue,Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions JIM, 41, 1372(2000) | 17 | Zhurnal Prikladnoi Khimii,Professor Gustav Tammann (to 140th Birthday Anniversary), Russian Journal of Applied Chemistry, 74, 1610(2001) | 18 | A. L. Greer,Metallic glasses, Science, 267, 1947(1995) | 19 | G. Shiflet,The more elements, the merrier, Science, 300, 443(2003) | 20 | WANG Qing,ZHA Qianfeng, LIU Enxue, DONG Chuang, WANG Xuejun, TAN Chaoxin, JI Chunjun, Composition design of high-strength martenstic precipitation hardening stainless steels based on a cluster model, acta metallurgica sinica, 48(10), 1201(2012) | 20 | (王 清, 查钱锋, 刘恩雪, 董 闯, 王学军, 谭朝鑫, 冀春俊, 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计, 金属学报, 48(10), 1201(2012)) | 21 | J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang,Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299(2004) | 22 | S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R Odette, A. A Tavassoli, K. Shiba, A. Kohyama, A. Kimura,Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H, Journal of Nuclear Materials, 307, 179(2002) | 23 | Ermile Gaganidze,Jarir Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fusion Engineering and Design, 88, 118(2003) | 24 | C. H. Shek, Y. M. WangC. Dong,The e/a-constant Hume–Rothery phases in an As-cast Zr65Al7.5Ni10Cu17.5 alloy, Mater. Sci. Eng. A, 291, 78(2000) | 25 | W. R. Chen, Y. M. Wang, J. B. Qiang, C. Dong,Bulk metallic glasses in the Zr-Al-Ni-Cu system, Acta Mater, 51, 1899(2003) | 26 | Sheng Guo,Chun Ng, Jian Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505(2011) | 27 | ZHAO Xiancun, SONG Weishun, YANG Zhiyong, LIANG Jianhui, LI Zhihui, High Strength Super High Strength Stainless Steels (Beijing, The Press of Metallurgy Industry, 2008) p.394-396 | 27 | ( p.394-396) | 28 | K. Ishida,Calculation of the effect of alloying elements on the Ms temperature in steels, Journal of Alloys and Compounds, 220(1), 126(1995) | 29 | K. Yvon, A. Paoli,Charge transfer and valence electron concentration in Chevrel phases, Solid State Communications, 24(1), 41(1977) | 30 | R. Ma, Y. Yang, Q. Yan, Y. Yang, X. Li, C. Ge,Metallurgical characterization of Ti-bearing 9Cr low activation martensitic steel, Acta Metall. Sin. (Eng. Lett.), 24(1), 9(2011) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|