Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 594-600    DOI: 10.11901/1005.3093.2014.134
Current Issue | Archive | Adv Search |
Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model
Yao SHI,Qing WANG(),Qun LI,Chuang DONG
School of Materials Science and Engineering, Key Laboratory of Materials Modification, Ministry of Education, Dalian University of Technology, Dalian 116024
Cite this article: 

Yao SHI,Qing WANG,Qun LI,Chuang DONG. Composition Design of Reduced Activation Ferritic/Martensitic (RAFM) Steels Based on Cluster Structure Model. Chinese Journal of Materials Research, 2014, 28(8): 594-600.

Download:  HTML  PDF(3542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composition characteristics of reduced activation ferritic/martensitic (RAFM) steels were investigated using a cluster-plus-glue-atom model. The basic cluster formula [Cr-Fe14](Cr0.5Fe0.5) was determined, where the cluster part [Cr-Fe14] is a rhombic dodecahedron centered by Cr and surrounded by 14 Fe atoms. According to the principle related with self-consistent magnification of cluster formula and similar element substitution, two multi-component alloys were designed by adding V, Mn, Mo, W, Nb and C into [Cr-Fe14](Cr0.5Fe0.5) i.e.[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1. Alloy rods with a diameter of 6 mm were prepared by copper mould suction casting method, then normalized at 1323 K for 0.5 h and tempered at 1023 K for 1 h, both followed by water-quenching. The experimental results revealed that the substitutional solid solution alloys without C exhibit a monolithic ferrite microstructure and that of the other serial alloys with C varies with alloying elements and their contents. The microhardness (HV) of alloys changes with microstructures, and furthermore, while the HV of substitutional solid solution alloys decreases monotonously with the increase of the valence electron concentration per volume VEC/Ra3.

Key words:  metallic materials      Fe-based alloys      reduced activation ferritic/martensitic steels      cluster structure model      composition design     
Received:  24 March 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51171035, ShenGu Research Fund, and the Fundamental Research Funds for the Central Universities No.DUT14LAB12.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.134     OR     https://www.cjmr.org/EN/Y2014/V28/I8/594

Fig.1  CN14 rhombic dodecahedron cluster in BCC structure, where the solute Cr is located in the cluster center and surrounded by fourteen base Fe in Fe-Cr, forming [Cr-Fe14] cluster
Grade Composition/(mass fraction, %) Composition/(atomic fraction, %) Cluster formula
JLF-1 Fe88.62Cr9W2V0.2Ta0.08C0.1 Fe88.97Cr9.70W0.61 V0.22Ta0.02C0.47 {[Cr16Fe224] (Cr8.96Fe4.84W1.57V0.57Ta0.06)}C1.21
EUROFER97 Fe89.08Cr8.9W1.1V0.20 Ta0.14Mn0.47C0.11 Fe88.88Cr9.54W0.33V0.22 Ta0.04Mn0.48C0.51 {[Cr16Fe224] (Cr8.54Fe4.70W0.86V0.56Ta0.11 Mn1.23)}C1.31
CLAM Fe88.68Cr9.00Ta0.07V0.20 W1.5Mn0.45C0.1 Fe88.71Cr9.67Ta0.02V0.22 W0.46Mn0.46C0.47 {[Cr16Fe224] (Cr8.87Fe4.16W1.17V0.56Ta0.06 Mn1.18)}C1.21
9CrWVTa Fe88.16Cr9.00Ta0.06V0.23 W2.00Mn0.45C0.1 Fe88.49Cr9.70Ta0.02V0.25 W0.61Mn0.46C0.47 {[Cr16Fe224] (Cr8.95Fe3.60W1.57V0.65Ta0.05 Mn1.18)}C1.21
Table 1  Compositions of typical RAFM steels and corresponding cluster formulas
Fig.2  Fe-Cr binary phase diagram
No. Cluster formula Atomic fraction/% Mass fraction/% VEC Ra /nm VEC/Ra3 /nm-3 Micro -structure Micro -hardness HV
1# [Cr16Fe224](Cr8Fe8) Fe90.63Cr9.375 Fe91.21Cr8.79 7.81 0.1271 3805.55 F 87
2# [Cr16Fe224] (Cr8V1Mn1W2Fe4) Fe89.06Cr9.375V0.39 W0.78Mn0.39 Fe88.09Cr8.63V0.35 W2.54Mn0.38 7.78 0.1272 3778.12 F 117
3# [Cr16Fe224] (Cr8V1Mn1Mo4W2) Fe87.5Cr9.375Mo1.56 V0.39W0.78Mn0.39 Fe85.59Cr8.54Mo2.6 V0.35W2.52Mn0.38 7.75 0.1274 3744.98 F 149
4# [Cr16Fe224](Cr8V0.5Nb0.5 Mn1Mo4W2) Fe87.5Cr9.375Nb0.20Mo1.56 V0.20W0.78Mn0.39 Fe85.47Cr8.52Nb0.32Mo2.62 V0.17W2.51Mn0.37 7.75 0.1275 3742.91 F 163
5# [Cr16Fe224] (Cr8V1Mn1Mo3Fe3) Fe88.67Cr9.375Mo1.17 V0.39Mn0.39 Fe88.53Cr8.72Mo2.01 V0.36Mn0.38 7.75 0.1273 3770.51 F 125
6# [Cr16Fe224] (Cr8V1Mn1Mo6) Fe87.5Cr9.375Mo2.34 V0.39Mn0.39 Fe86.64Cr8.64Mo3.99 V0.35Mn0.38 7.77 0.1274 3745.67 F 137
7# {[Cr16Fe224](Cr8Fe8)}C1 Fe90.27Cr9.34C0.39 Fe91.14Cr8.78C0.08 7.80 0.1270 3810.59 M 165
8# {[Cr16Fe224] (Cr8V1Mn1W2Fe4)}C1 Fe88.76Cr9.34V0.39W0.78 Mn0.39 C0.39 Fe88.02Cr8.63V0.35W2.54 Mn0.38 C0.08 7.77 0.1271 3783.19 M 199
9# {[Cr16Fe224] (Cr8V1Mn1Mo4W2)}C1 Fe87.16Cr9.34Mo1.56V0.39 W0.78Mn0.39 C0.39 Fe85.52Cr8.53Mo2.62V0.35 W2.51Mn0.38 C0.08 7.74 0.1273 3750.09 F+M 180
10# {[Cr16Fe224](Cr8V0.5Nb0.5Mn1Mo4 W2)}C1 Fe87.16Cr9.34Nb0.19Mo1.56 V0.19W0.78Mn0.39 C0.39 Fe85.40Cr8.62Nb0.32Mo2.62 V0.17W2.51Mn0.38 C0.08 7.74 0.1273 3748.03 F 169
11# {[Cr16Fe224] (Cr8V1Mn1Mo3Fe3)}C1 Fe88.33Cr9.34Mo1.16V0.39 Mn0.39 C0.39 Fe88.46Cr8.71Mo2.01V0.36 Mn0.38 C0.08 7.76 0.1271 3775.59 F+M 175
12# {[Cr16Fe224] (Cr8V1Mn1Mo6)}C1 Fe87.16Cr9.34Mo2.33V0.39 Mn0.39 C0.39 Fe86.56Cr8.64Mo3.98V0.35 Mn0.38 C0.08 7.74 0.1273 3750.78 F 160
Table 2  Compositions, microstructure and micro-hardness of designed alloys
Fig.3  XRD patterns of heat-treated[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8) (a) and {[Cr16Fe224](Cr8(V, Nb, Mn, Mo, W, Fe)8)}C1 (b) alloys
Fig.4  OM images of heat-treated alloy series
Fe Cr Mo Mn W V Nb C
Valence electron VEC 8 6 6 7 6 5 5 4
Atomic radius R/nm 0.127 0.128 0.140 0.126 0.141 0.135 0.147 0.092
Table 3  Valence electron contributions and Goldschmidt atomic radii of elements in designed alloys.
Fig.5  Variation of HV vs. VEC/Ra3 of the designed alloy series
1 E. E. Bloom, S. J. Zinkle, F.W. Wiffen,Materials to deliver the promise of fusion power – progress and challenges, Journal of Nuclear Materials, 329, 12(2004)
2 A. Kohyama, A. Hishinuma, D. S. Gelles, R.L. Klueh, W. Dietz, K. Ehrlich,Low-activation ferritic and martensitic steels for fusion application, Journal of Nuclear Materials, 233, 138(1996)
3 K. Ehrlich, S. W. Cierjacks, S. Kelzenberg, A. M?slang, The Development of Structural Materials for Reduced Long-Term Activation (ASTM Special Technical Publications, STP 1270, 1996)p.1109
4 R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, M. Victoria,Ferritic/martensitic steels–overview of recent results, Journal of Nuclear Materials, 307, 455(2002)
5 R. L. Klueh, M. A. Sokolov. Mechanical properties of irradiated 9Cr–2WVTa steel with without nickel,9Cr–2WVTa steel with and without nickel, Journal of Nuclear Materials, 367, 102(2007)
6 R. Lindau, A. M?slang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.-A. F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Sch?ublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.v.d. Schaaf, E. Lucon, W. Dietz,Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Engineering and Design, 75, 989(2005)
7 HUANG Qunying,YU Jinnan, WAN Farong, LI Jiangang, WU Yican, The development of low activation martensitic steels for fusion reactor, Chinese Journal of Nuclear Science and Engineering, 24, 56(2004)
7 (黄群英, 郁金南, 万发荣, 李建刚, 吴宜灿, 聚变堆低活化马氏体钢的发展, 核科学与工程, 24, 56(2004))
8 Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao,Progress in development of China Low Activation Martensitic steel for fusion application, Journal of Nuclear Materials, 367, 142(2007)
9 A. L. Schaeffler,Constitution diagram for stainless steel weld metal, Metal Progress, 56(11), 680(1949)
10 R. L. Klueh, N. Hashimoto, P. J. Maziasz,Nano scale nitride particle strengthened high temperature wrought ferritic and martensitic steels, United States Patent US7520942 B2(2009)
11 C. Dong, Q. Wang, J. B. Qiang, Y. M. Wang, N. Jiang, G. Han, Y. H. Li, J. WuJ. H. Xia,From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses, Journal of Physics D: Applied Physics, 40(15), R273(2007)
12 HAO Chuanpu,WANG Qing, MA Rentao, WANG Yingmin, QIANG Jianbing, DONG Chuang, Cluster-plus-glue-atom model in bcc solid solution alloys, Acta Physica Sinica, 60(11), 116101-1(2011)
12 (郝传璞, 王 清, 马仁涛, 王英敏, 羌建兵, 董 闯, 体心立方固溶体合金中的“团簇+连接原子”结构模型, 物理学报, 60(11), 116101-1(2011))
13 Q. Wang, C. J. Ji, Y. M. Wang, J. B. Qiang, C. Dong,β-Ti alloys with low Young’s moduli interpreted by cluster-plus-glue-atom model, Metallurgical and Materials Transactions A, 44(4), 1872(2013)
14 MA Rentao,HAO Chuanpu, WANG Qing, REN Mingfa, WANG Yingmin, DONG Chuang, Cluster-plus-glue-atom model and composition design of BCC Ti-Mo-Nb-Zr solid solution alloys with low young’s modulus, Acta. Metall. Sin., 46, 1034(2010)
14 (马仁涛, 郝传璞, 王 清, 任明法, 王英敏, 董 闯, 低弹bcc结构Ti-Mo-Nb-Zr固溶体合金的“团簇+连接原子”模型及其成分设计, 金属学报, 46, 1034(2010))
15 WANG Qing,GUO Xiaolei, ZHANG Ruiqian, WANG Yingmin, DONG Chuang, JI Chunjun, Composition design of high-strength ferritic aging stainless steels, Transactions of materials and heat treatment, 35, 72(2014)
15 (王 清, 郭晓雷, 张瑞谦, 王英敏, 董 闯, 冀春俊, 高强铁素体时效不锈钢成分设计, 材料热处理学报, 35, 72(2014))
16 A. Takeuchi, A. Inoue,Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions JIM, 41, 1372(2000)
17 Zhurnal Prikladnoi Khimii,Professor Gustav Tammann (to 140th Birthday Anniversary), Russian Journal of Applied Chemistry, 74, 1610(2001)
18 A. L. Greer,Metallic glasses, Science, 267, 1947(1995)
19 G. Shiflet,The more elements, the merrier, Science, 300, 443(2003)
20 WANG Qing,ZHA Qianfeng, LIU Enxue, DONG Chuang, WANG Xuejun, TAN Chaoxin, JI Chunjun, Composition design of high-strength martenstic precipitation hardening stainless steels based on a cluster model, acta metallurgica sinica, 48(10), 1201(2012)
20 (王 清, 查钱锋, 刘恩雪, 董 闯, 王学军, 谭朝鑫, 冀春俊, 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计, 金属学报, 48(10), 1201(2012))
21 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang,Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299(2004)
22 S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R Odette, A. A Tavassoli, K. Shiba, A. Kohyama, A. Kimura,Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H, Journal of Nuclear Materials, 307, 179(2002)
23 Ermile Gaganidze,Jarir Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fusion Engineering and Design, 88, 118(2003)
24 C. H. Shek, Y. M. WangC. Dong,The e/a-constant Hume–Rothery phases in an As-cast Zr65Al7.5Ni10Cu17.5 alloy, Mater. Sci. Eng. A, 291, 78(2000)
25 W. R. Chen, Y. M. Wang, J. B. Qiang, C. Dong,Bulk metallic glasses in the Zr-Al-Ni-Cu system, Acta Mater, 51, 1899(2003)
26 Sheng Guo,Chun Ng, Jian Lu, and C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505(2011)
27 ZHAO Xiancun, SONG Weishun, YANG Zhiyong, LIANG Jianhui, LI Zhihui, High Strength Super High Strength Stainless Steels (Beijing, The Press of Metallurgy Industry, 2008) p.394-396
27 ( p.394-396)
28 K. Ishida,Calculation of the effect of alloying elements on the Ms temperature in steels, Journal of Alloys and Compounds, 220(1), 126(1995)
29 K. Yvon, A. Paoli,Charge transfer and valence electron concentration in Chevrel phases, Solid State Communications, 24(1), 41(1977)
30 R. Ma, Y. Yang, Q. Yan, Y. Yang, X. Li, C. Ge,Metallurgical characterization of Ti-bearing 9Cr low activation martensitic steel, Acta Metall. Sin. (Eng. Lett.), 24(1), 9(2011)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!