Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 601-609    DOI: 10.11901/1005.3093.2014.239
Current Issue | Archive | Adv Search |
Characterization of Surface Film of Nb-60Ta-2Zr Alloy Immersed in Simulated Plasma Solution and Whole Blood
Huizhe LI1,Xiumei LI2,Jian XU1,*()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
2. School of Stomatology, China Medical University, Shenyang, 110002
Cite this article: 

Huizhe LI,Xiumei LI,Jian XU. Characterization of Surface Film of Nb-60Ta-2Zr Alloy Immersed in Simulated Plasma Solution and Whole Blood. Chinese Journal of Materials Research, 2014, 28(8): 601-609.

Download:  HTML  PDF(3088KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

X-ray photoelectron spectroscopy (XPS) was used to characterize the surface films formed on Nb-60Ta-2Zr alloy with an immersion in simulated plasma solution (r-SBF) and human whole blood. Significant difference in the chemical composition and thickness of the oxide films formed on the alloy immersed in these two media was identified. After immersion in r-SBF solution for 24 h, an oxide film of mixed Nb2O5 and Ta2O5 formed on the alloy surface, while on top of which a 50 nm thick deposition film containing Ca and P could be clearly detected. In contrast, for the alloy immersed in whole blood, only a 24 nm thick oxide film of mixed Nb2O5 and Ta2O5 existed, but no deposition film containing Ca and P was detected. It was indicated that even though the ion concentration in these two media is nearly identical, the organic components in human blood such as proteins and blood cells may play a role to inhibit the deposition of Ca and P elements.

Key words:  biomaterial      Nb alloy      XPS      simulated plasma      blood      surface film     
Received:  09 May 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.239     OR     https://www.cjmr.org/EN/Y2014/V28/I8/601

Reagent NaCl NaHCO3 Na2CO3 KCl K2HPO43H2O MgCl26H2O HEPES CaCl2 Na2SO4
Composition 5.403 0.740 2.046 0.225 0.230 0.311 11.928 0.293 0.072
Table 1  Chemical composition of the r-SBF solution (g/L)
Fig.1  XPS spectrum of the Nb-60Ta-2Zr alloy as-polished and immersed in r-SBF solution for 1 h and 24 h at 37℃
Nb Ta Zr O Ca P S N Na Cl C dfilm
As-polished 15.6 11.7 1.2 48.5 - - - - - - 23.0 0.9
1 h in r-SBF 11.0 9.2 0.6 39.2 0.8 1.2 - - 0.3 - 37.8 2.3
24 h in r-SBF 0.1 0.05 0.01 28.1 8.6 7.2 - - 0.3 - 55.6 110
1 h in blood 0.1 0.03 0.04 16.8 0.2 0.2 0.5 14.0 0.02 0.3 67.7 16
24 h in blood 0.8 0.9 0.2 22.5 1.3 0.9 0.9 4.4 0.4 1.6 66.2 24
Table 2  Element concentration (at.%) of the outermost layer of Nb-60Ta-2Zr alloy as-polished or immersed in r-SBF solution and whole blood for 1 h and 24 h, together with thickness of surface film, dfilm (nm)
Fig.2  High-resolution XPS spectra of elements (a) oxygen, (b) calcium and (c) phosphorus for the Nb-60Ta-2Zr alloy immersed in r-SBF solution for 24 h at 37℃
Fig.3  Depth profiles of elemental concentration in the surface of Nb-60Ta-2Zr alloy immersed in r-SBF for (a) 1 h and (b) 24 h
Fig.4  SEM images of the surface of Nb-60Ta-2Zr alloy incubated in whole blood for 1 h: (a) adheredblood cells, (b) typical red blood cells, (c) typical platelets. Arrows in (a) point the red blood cells (white) and platelets (black)
Fig.5  XPS spectrum of the Nb-60Ta-2Zr alloy after immersion for 1 h and 24 h in human whole blood at 37℃
Fig.6  High-resolution XPS spectra of the outermost layer on Nb-60Ta-2Zr alloy after immersion in whole blood at 37℃ for 1 h. (a) O 1s, (b) N 1s, (c) C 1s, (d) S 2p
Fig.7  Depth profiles of elemental concentration in the surface of Nb-60Ta-2Zr alloy immersed in whole blood for (a) 1 h and (b) 24 h
1 T. Hanawa,Metal ion release from metal implants, Mater. Sci. Eng. C, 24(6-8), 745(2004)
2 V. Hlady, J. Buijs,Protein adsorption on solid surfaces, Curr. Opin. Biotech., 7(1), 72(1996)
3 A. Klinger, D. Steinberg, D. Kohavi, M.N. Sela,Mechanism of adsorption of human albumin to titanium in vitro, J. Biomed. Mater. Res., 36(3), 387(1997)
4 R. L. Williams, D. F. Williams,Albumin adsorption on metal surfaces, Biomaterials, 9(3), 206(1988)
5 G. C. F. Clark, D. F. Williams,The effects of proteins on metallic corrosion, J. Biomed. Mater. Res., 16(2), 125(1982)
6 S. Karimi, T. Nickchi, A.M. Alfantazi,Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions, Appl. Surf. Sci., 258(16), 6087(2012)
7 S. Virtanen, I. Milosev, E. Gomez-Barrena, R. Trebse, J. Salo, Y.T. Konttinen,Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomater., 4(3), 468(2008)
8 D. O. Halwani, P. G. Anderson, B. C. Brott, A. S. Anayiotos, J. E. Lemons,Clinical device-related article surface characterization of explanted endovascular stents: evidence of in vivo corrosion, J. Biomed. Mater. Res. Part B Appl. Biomater., 95(1), 225(2010)
9 T. Hanawa, S. Hiromoto, K. Asami,Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS, Appl. Surf. Sci., 183(1-2), 68(2001)
10 A. Nagai, Y. Tsutsumi, Y. Suzuki, K. Katayama, T. Hanawa, K. Yamashita,Characterization of air-formed surface oxide film on a Co–Ni–Cr–Mo alloy (MP35N) and its change in Hanks’ solution, Appl. Surf. Sci., 258(14), 5490(2012)
11 S. Hiromoto,Composition of surface oxide film of titanium with culturing murine fibroblasts L929, Biomaterials, 25(6), 979(2004)
12 R. Hang, S. Ma, V. Ji, P. K. Chu,Corrosion behavior of NiTi alloy in fetal bovine serum, Electrochim. Acta, 55(20), 5551(2010)
13 C. Schille, M. Braun, H. P. Wendel, L. Scheideler, N. Hort, H. P. Reichel, E. Schweizer, J. Geis-Gerstorfer,Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation, Materials Science and Engineering: B, 176(20), 1797(2011)
14 Y. Tanaka, K. Kurashima, H. Saito, A. Nagai, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa,In vitro short-term platelet adhesion on various metals, J. Artif. Organs, 12(3), 182(2009)
15 S. Kanagaraja, I. Lundstr?m, H. Nygren, P. Tengvall,Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood, Biomaterials, 17(23), 2225(1996)
16 J. F. Schenck,The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Med. Phys., 23(6), 815(1996)
17 J. Starcukova, Z. Starcuk Jr., H. Hubalkova, I. Linetskiy,Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts, Dent. Mater., 24(6), 715(2008)
18 F. G. Shellock, V. J. Shellock,Metallic stents: Evaluation of MR imaging safety, Am. J. Roentgenol., 173(3), 543(1999)
19 J. Hug, E. Nagel, A. Bornstedt, B. Schnackenburg, H. Oswald, E. Fleck,Coronary arterial stents: Safety and artifacts during MR imaging, Radiology, 216(3), 781(2000)
20 R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kahler, S. Baldus, T. Meinertz, C. Hamm,Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis, Lancet, 356(9245), 1895(2000)
21 E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme,Biocompatibility of beta-stabilizing elements of titanium alloys, Biomaterials, 25(26), 5705(2004)
22 B. O'Brien, J. Stinson, W. Carroll,Development of a new niobium-based alloy for vascular stent applications, J. Mech. Behav. Biomed. Mater., 1(4), 303(2008)
23 B. J. O'Brien, J. S. Stinson, D. A. Boismier, W. M. Carroll,Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents, Biomaterials, 29(34), 4540(2008)
24 H.-Z. Li, J. Xu,MRI compatible Nb–Ta–Zr alloys used for vascular stents: Optimization for mechanical properties, J. Mech. Behav. Biomed. Mater., 32, 166(2014)
25 X.-M. Li, H.-Z. Li, S.-P. Wang, H.-M. Huang, H.-H. Huang, H.-J. Ai, J. Xu,MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: Haemocompatibility and its correlation with protein adsorption, Mater. Sci. Eng. C, 42, 385(2014)
26 N. Padilla, A. Bronson,Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution, J. Biomed. Mater. Res. Part A, 81(3), 531(2007)
27 A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura,Preparation and assessment of revised simulated body fluids, J. Biomed. Mater. Res. Part A, 65(2), 188(2003)
28 S. L. Goodman,Sheep, pig, and human platelet–material interactions with model cardiovascular biomaterials, J. Biomed. Mater. Res., 45(3), 240(1999)
29 C. M. Pradier, D. Costa, C. Rubio, C. Compere, P. Marcus,Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization, Surf. Interface. Anal., 34(1), 50(2002)
30 K. Cai, J. Bossert, K. D. Jandt,Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloids Surf B Biointerfaces, 49(2), 136(2006)
31 Y. Okazaki, E. Gotoh, T. Manabe, K. Kobayashi,Comparison of metal concentrations in rat tibia tissues with various metallic implants, Biomaterials, 25(28), 5913(2004)
32 W. Bal, M. Sokolowska, E. Kurowska, P. Faller,Binding of transition metal ions to albumin: sites, affinities and rates, Biochim Biophys Acta, 1830(12), 5444(2013)
[1] JIA Jianbo,LU Chao,YANG Zhigang,DONG Tiantian,GU Yongfei,XU Yan. Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy[J]. 材料研究学报, 2020, 34(3): 198-208.
[2] Shui XU, Yan ZHANG, Baodong GAO, Zhao ZHAO, Guotao CHENG, Yong ZHU. Preparation and Properties of Composite Films of Silk Fibroin/Carboxymethyl Chitosan[J]. 材料研究学报, 2017, 31(8): 612-618.
[3] ZHANG Bin, LIU Li, LI Tianshu, LI Ying, LEI Mingkai, WANG Fuhui. Influence of Nanocrystallization on Adsorption Behavior of Cl- on Fe20Cr Alloy in 0.1 mol/L Cl- Borate Buffer Solution[J]. 材料研究学报, 2016, 30(1): 6-9.
[4] Zhengguan LU,Jie WU,Lei XU,Bin LU,Jiafeng LEI,Rui YANG. Comparative Study on Hot Workability of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy[J]. 材料研究学报, 2015, 29(6): 445-452.
[5] YE Yun,YAN Min,CHEN Tianyuan,CAI Shoujin,GUO Tailiang**. Preparation and Field Emission Properties of TiO2 Nanotube Arrays[J]. 材料研究学报, 2013, 27(3): 252-258.
[6] DU Huiwei SHEN Ling DING Hu YANG Jie ZHAO Lei MA Zhongquan. Compound States Profile and Thickness of Ultra–thin Silicon Dioxide Film[J]. 材料研究学报, 2012, 26(5): 461-466.
[7] ZHANG Yan TIAN Miaomiao LI Mo LIU Lei. Electrechemical Corrosion of Nickel-based Alloys with Different Chromium Contents[J]. 材料研究学报, 2011, 25(6): 645-650.
[8] YE Yun GUO Tailiang JIANG Yadong LI Weizhi. The Component and Structure of Thermally Poled and Corona Charged PVDF Films[J]. 材料研究学报, 2011, 25(4): 403-407.
[9] GUO Na LI Yadong. Effect of Sm3+ Doping on the Properties of Thermoceramics SmxNiCo0.2Mn1.8O4[J]. 材料研究学报, 2011, 25(2): 209-213.
[10] WANG Zhengke HU Qiaoling LI Youliang DAI Zhuojun. Three Dimensional Chitosan Rods Reinforced by Microwave Irradiation[J]. 材料研究学报, 2011, 25(2): 113-117.
[11] WANG Qingliang SUN Yanmin ZHANG Lei. Tribological Properties of Diamond– like Carbon Films Deposited by PECVD[J]. 材料研究学报, 2011, 25(1): 73-78.
[12] MAO Lihe WANG Yulin WAN Yizao HE Fang HUANG Yuan. Corrosion Resistance of Ti–ion Implanted Mg–Ca–Zn Alloys in SBF[J]. 材料研究学报, 2010, 24(4): 383-388.
[13] LIU Qiang CHENG Xiaonong XU Hongxing FEI Huangxia. Effect of micromagnetic field surface roughness of 316L stainless steel and NiTi alloy on blood compatibility[J]. 材料研究学报, 2009, 23(3): 323-326.
[14] Sheng-Fa ZHU. The preparation and blood compatibility of pure iron thin film using filter cathode vacuum arc[J]. 材料研究学报, 2008, 22(5): 495-499.
[15] ;. Preparation and performance of biodegradable crosslinked PVP materials[J]. 材料研究学报, 2004, 18(5): 511-516.
No Suggested Reading articles found!