Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (2): 115-119    DOI: 10.11901/1005.3093.2014.122
Current Issue | Archive | Adv Search |
Thermoelectric Properties of Nb-doped Lead Telluride Alloys
Jie ZHAO1,2,Caini XIN1,2,Yemao HAN1,2,Min ZHOU1,*(),Rongjin HUANG1,Laifeng LI1
1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Jie ZHAO,Caini XIN,Yemao HAN,Min ZHOU,Rongjin HUANG,Laifeng LI. Thermoelectric Properties of Nb-doped Lead Telluride Alloys. Chinese Journal of Materials Research, 2015, 29(2): 115-119.

Download:  HTML  PDF(1189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk Nb-doped lead telluride Pb1.1Te was prepared by using a combined process of mechanical alloying (MA) and spark plasma sintering (SPS). Then its transport properties such as electrical resistivity, Seebeck coefficient and thermal diffusion coefficient were measured in a temperature range from 323 K to 673 K. As a result, the doped Nb can effectively enhance the phonon scattering ability of the lead telluride Pb1.1Te, and optimize its electrical performance as well. Large power factors of over 20 mW/(cm·K2) were obtained in a wide temperature range (523-623 K). In addition, the thermal conductivity decreased with the increasing Nb content, which may also be resulted from the increase of the phonon scattering ability, thereby an optimal ZT value may be found. A maximum ZT value of 1.27 was obtained for Pb1.03Nb0.07Te at 673 K, which was twice as high as that for the un-doped Pb1.1Te.

Key words:  metallic materials      Seebeck coefficient      lattice thermal conductivity      n-type PbTe alloys     
Received:  17 March 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.122     OR     https://www.cjmr.org/EN/Y2015/V29/I2/115

Fig.1  XRD spectra for the samples of Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08)
Fig.2  SEM images of fracture surface for Pb1.1Te (a) and Pb1.03Nb0.07Te (b)
Fig.3  Electrical resistivity(a), Seebeck coefficient (b) and power factor (c) of Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08) as a function of temperature, the violet stars are electrical resistivity and Seebeck coefficient at 323 K for pure PbTe reported in Ref [18]
Fig.4  Hall mobility as function of Hall carrier density of Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08) at 300 K
Fig.5  Temperature dependence of the total thermal conductivity κ (a) and lattice thermal conductivity κl (b) for Pb1.1-xNbxTe
Fig.6  ZT as a function of temperature for Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08)
1 D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, 1995)p.7
2 L. E. Bell,Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457(2008)
3 S. B. Riffat, X. Ma,Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, 23, 913(2003)
4 G. J. Snyder, E.S.Toberer,Complex thermoelectric materials, Nature Materials, 7, 105(2008)
5 J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis,New and old concepts in thermoelectric materials, Angew Chem. Int. Ed. Engl., 48, 8616(2009)
6 M.?S. Dresselhaus, G. Chen, M.?Y. Tang, R.G. Yang, H. Lee, D.?Z. Wang, Z.?F. Ren, J.-P. Fleurial, P. Gogna,New directions for low-dimensional thermoelectric materials, Advanced Materials, 19, 1043(2007)
7 J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou,High-performance nanostructured thermoelectric materials, NPG Asia Materials, 2, 152(2010)
8 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen,Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2, 466(2009)
9 Y. Pei, H. Wang, G. J. Snyder,Band engineering of thermoelectric materials, Advanced Materials, 24, 6125(2012)
10 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder,Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554(2008)
11 K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis,Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818(2004)
12 S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, M. G. Kanatzidis,High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures, Journal of the American Chemical Society, 133, 16588(2011)
13 Y. Pei, A. LaLonde, S. Iwanaga, G. J. Snyder,High thermoelectric figure of merit in heavy hole dominated PbTe, Energy & Environmental Science, 4, 2085(2011)
14 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder,Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66(2011)
15 R. Fritts,Thermoelectric Materials and Devices (Reinhold Pub.Corp., 1960)p.143-162
16 A. D. LaLonde, Y. Pei, H. Wang, G. J. Snyder,Lead telluride alloy thermoelectrics, Materials Today, 14, 526(2011)
17 Y. Pei, N. A. Heinz, A. LaLonde, G. J. Snyder,Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride, Energy & Environmental Science, 4, 3640(2011)
18 Y.-L. Pei, Y. Liu,Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS, Journal of Alloys and Compounds, 514, 40(2012)
19 H. Z. Wang, Q. Y. Zhang, B. Yu, H. Wang, W. S. Liu, G. Chen, Z. F. Ren,Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys, Journal of Materials Research, 26, 912, (2011)
20 J. P. Heremans, C. M. Thrush, D. T. Morelli,Thermopower enhancement in PbTe with Pb precipitates, Journal of Applied Physics, 98, 063703(2005)
21 Z. Chen, M. Zhou, R. J. Huang, C. M. Song, Y. Zhou, L. F. Li,Thermoelectric properties of p-type Pb-doped Bi85Sb15?xPbx alloys at cryogenic temperatures, Journal of Alloys and Compounds, 511, 85(2012)
22 H. Wang, J.-F. Li, C.-W. Nan, M. Zhou, W.S. Liu, B.-P. Zhang, T. Kita,High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Applied Physics Letters, 88, 092104(2006)
23 X. J. Zheng, L. Zhu, Y.-H. Zhou, Q. Zhang,Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials, Applied Physics Letters, 87, 242101(2005)
24 M. Zhou, L. Chen, C. Feng, D. Wang, J.-F. Li,Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb, Journal of Applied Physics, 101, 113714(2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!