Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (2): 108-114    DOI: 10.11901/1005.3093.2014.407
Current Issue | Archive | Adv Search |
Effect of Annealing Temperature on Properties of Cold Rolled Fe-Mn-Al-C Low Density Steel
Fuqiang YANG,Renbo SONG(),Yaping LI,Ting SUN,Kaikun WANG,Tai KANG
(School of Materials Science and Engineering, University of Science and Technology Beijing,
Beijing 100083, China)
Cite this article: 

Fuqiang YANG,Renbo SONG,Yaping LI,Ting SUN,Kaikun WANG,Tai KANG. Effect of Annealing Temperature on Properties of Cold Rolled Fe-Mn-Al-C Low Density Steel. Chinese Journal of Materials Research, 2015, 29(2): 108-114.

Download:  HTML  PDF(3108KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of annealing treatment in a temperature range of 850-1050℃ on the evolution of microstructure involved with austenite, ferrite and carbides etc., as well as the mechanical properties and fracture behavior was studied for a cold rolled Fe-Mn-Al-C low density steel. The results show that the experimental steel annealed at 850℃ exhibits a complex microstructure consisted of austenite, banded d-ferrite, a-ferrite and small amount of carbides; there also existed intercrystalline network of ferrite and carbides which resulted in higher strength and poor plasticity, thus the steel becomes susceptible to cleavage fracture; the steel annealed at 900-1050℃ consisted of recrystallized austenite as matrix, in which the volume fraction of a-ferrite decreased with the increasing temperature, while the band like d-ferrite was crushed into islets and distributed in the matrix discontinuously; as the growth of d-ferrite was more obvious than that of austenite, larger volume fraction of ferrite did occur, which resulted in high intensity of X-ray diffraction peaks of ferrite; the microstructure evolution during annealing lead to decrease of tensile strength and increase of total elongation with the increasing temperature; the experimental steel annealed at 1000℃ exhibits excellent combination of strength and ductility: i.e. tensile strength 1003.1 MPa, total elongation 41.28% and product of strength with ductility 41.4 GPa%. Therefore, to acquire the optimal combination of strength and ductility, the cold-rolled Fe-Mn-Al-C steel should be annealed at temperatures above 950℃. Furthermore, the measured density of 6.55 gcm-3 ensures this kind of ultra-high strength steel a remarkable weight reduction effect of 16.6%.

Key words:  metallic materials      low density steel      annealing temperature      microstructure      mechanical properties     
Received:  11 August 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.407     OR     https://www.cjmr.org/EN/Y2015/V29/I2/108

C Mn Al Si Nb P S Fe
0.95 27.02 11.5 0.59 0.043 ≤0.003 ≤0.003 Bal.
Table 1  Chemical composition of experimental steels (mass fraction, %)
T/℃ Rm/MPa Rp0.2/MPa Elongation/% Rm×Elongation/GPa% HV
850 - - 0.72 - 400.7
900 1176.9 907.6 27.60 32.48 357.0
950 1089.9 847.8 35.68 38.89 331.5
1000 1003.1 738.1 41.28 41.41 308.9
1050 953.7 656.6 43.20 41.20 296.9
Table 2  Mechanical properties of Fe-Mn-Al-C steel at various annealing temperatures
Fig.1  Mechanical properties evolution of experimental steel with annealing temperature, (a) tensile strength and hardness, (b) elongation and Rm × elongation
Fig.2  True stress-strain curves (a) and corresponding dσ/de curves (b) of steel annealed at various temperatures
Fig.3  SEM images of experimental steel annealed at various temperatures, (a) 850℃, (b) 900℃, (c) 950℃, (d) 1000℃, (e) 1050℃
Fig.4  XRD spectra of experimental steel at various temperatures
Fig.5  Mass fraction of phases at various temperatures
Fig.6  Tensile fractures of experimental steel, (a) cold rolled, (b) annealed at 850℃, (c) annealed at 1050℃
Fig.7  Equilibrium phase diagram by Thermal-Calc software and XRD result
Fig.8  γ2 morphology within the d-ferrite annealed at 850℃ and corresponding line scanning result
1 TANG Di,MI Zhenli, CHEN Yulai, Technology and research and development of advanced automobile steel abroad, Iron and Steel, 40(6), 1(2005)
1 (唐 荻, 米振莉, 陈雨来, 国外新型汽车用钢的技术要求及研究开发现状, 钢铁, 40(6), 1(2005))
2 D. Suh, N. J. Kim,Low-density steels, Scripta Materialia, 68(6), 337(2013)
3 Z. H. Cai, H. Ding, R. D. K. Misra, H. Kong, H. Y. Wu,Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe-Mn-Al-C steel, Materials Science and Engineering: A, 595, 86(2014)
4 H. Ding, Z. Tang, W. Li, M. Wang, D. Song,Microstructures and Mechanical Properties of Fe-Mn-(Al, Si) TRIP/TWIP Steels, Journal of Iron and Steel Research, International, 13(6), 66(2006)
5 G. Frommeyer,Udo Brux, Microstructure and mechanical properties of high-strength Fe-Mn-Al-C lihgt-weight TRIPLEX steel, Steel Research Int., 77(9), 627(2006)
6 O. Gr?ssel, L. Krüger, G. Frommeyer, L. W. Meyer,High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development- properties-application, International Journal of Plasticity, 16(10), 1391(2000)
7 J. D. Yoo, S. W. Hwang, K. Park,Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel, Materials Science and Engineering: A, 508(1), 234(2009)
8 A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, P. Changizian,Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel, Materials & Design, 53, 99(2014)
9 I. Kalashnikov, O. Acselrad, A. Shalkevich, C. Pereira L,Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system, Journal of Materials Engineering and Performance, 9(6), 597(2000)
10 A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, X. Kleber,Ferrite effects in Fe-Mn-Al-C triplex steels, Metallurgical and Materials Transactions A, 45(1), 324(2014)
11 H. Kim, D. Suh, N. J. Kim,Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties, Science and Technology of Advanced Materials, 14(1), 14205(2013)
12 M. C. Li, H. Chang, P. W. Kao, D. Gan,The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Materials Chemistry and Physics, 59(1), 96(1999)
13 M. C. Haa, K. Jin-Mo, J. Lee, S. W. Hwang, K. Park,Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature, Materials Science & Engineering A, 586, 276(2013)
14 K. Ishida, H. Ohtanl, N. Satoh, R. Kainuma, T. Nishizawa,Phase equilibra in Fe-Mn-Al-C alloys, ISIJ Int, 30(8), 680(1990)
15 K. Lee, S. Park, Y. S. Choi, S. Kim, T. Lee, K. H. Oh, H. N. Han,Dual-scale correlation of mechanical behavior in duplex low-density steel, Scripta Materialia, 69(8), 618(2013)
16 Z. Q. Wu, H. Ding, H. Y. Li, M. L. Huang, F. R. Cao,Microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel, Materials Science and Engineering: A, 584, 150(2013)
17 V. Torabinejad, A. Zarei-Hanzaki, S. Moemeni, A. Imandoust,An investigation to the microstructural evolution of Fe-29Mn-5Al dual-phase twinning-induced plasticity steel through annealing, Materials & Design, 32(10), 5015(2011)
18 C. Seo, K. H. Kwon, K. Choi, N. J. Kim, K. Kim, J. H. Kwak, S. Lee, N. J. Kim,Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel, Scripta Materialia, 66(8), 519(2012)
19 G. Fargas, M. Anglada, A. Mateo,Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel, Journal of Materials Processing Technology, 209(4), 1770(2009)
20 H. Cho, K. Lee,Effect of cold working and isothermal aging on the precipitation of sigma phase in 2205 duplex stainless steel, Materials Characterization, 75, 29(2013)
21 H. L. X. Jin,Secondary austenite morphologies in fusion zone of welded joint after postweld heat treatment with a continuous wave laser, Journal of Materials Science & Technology, 28(3), 249(2012)
22 K. Choi, C. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K. Park, N. J. Kim,Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel, Scripta Materialia, 63(10), 1028(2010)
23 S. S. Sohna, B. J. Leea, S. Leea, N. J. Kimb, J. H. Kwakc,Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel, Acta Mater., 61(13), 5050(2013)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!