Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 274-280    DOI: 10.11901/1005.3093.2013.623
Current Issue | Archive | Adv Search |
Effect of Retained Austenite on Toughness and Plasticity of 0.23C-1.9Mn-1.6Si Steel
Yongqiang REN,Chengjia SHANG(),Hongwei ZHANG,Shengfu YUAN,Erhu CHEN
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Yongqiang REN,Chengjia SHANG,Hongwei ZHANG,Shengfu YUAN,Erhu CHEN. Effect of Retained Austenite on Toughness and Plasticity of 0.23C-1.9Mn-1.6Si Steel. Chinese Journal of Materials Research, 2014, 28(4): 274-280.

Download:  HTML  PDF(2585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 6.5 mm thick plate of a multiphase steel (0.23C-1.9Mn-1.6Si%) composed of intercritical ferrite, martensite and well-distributed retained austenite was obtained by an optimized IQ&P process. Tensile strength of this kind of multiphase steel is higher than 1000MPa. Microstructure of the steel was characterized by means of SEM and XRD, and its mechanical properties were measured by the tensile and instrumented Charpy impact testing at room temperature. In comparison with the IQ&T steel and Q&T steel, which have the same tensile strength, the IQ&P steel shows much better comprehensive mechanical properties with higher toughness, better elongation and bigger products of tensile strength and total elongation. The reason for this is mainly the multi-phase microstructure of the IQ&P steel. TRIP effect of the retained austenite which occurs during the deformation process can significantly improve the toughness and plasticity of the IQ&P steel, and thus contributed to the improvement of mechanical properties.

Key words:  metallic materials      multiphase microstructure      retained austenite      impact toughness      uniform elongation      products of tensile strength and total elongation     
Received:  29 August 2013     
Fund: *Supported by the National Basic Research Program of China No. 2010CB630801.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.623     OR     https://www.cjmr.org/EN/Y2014/V28/I4/274

Fig.1  Equilibrium phase fractions for the 0.23C-1.9Mn-1.6Si steel as a function of temperature as calculated using Thermo-Calc
Fig.2  Microstructures of the 0.23C-1.95Mn-1.62Si steel obtained by the treatment of direct quenching after 900℃ austenitizing for 30min
Process Heating temperature (t) Quench-finish temperature Partitioning temperature (t) Tempering temperature Final cooling method
IQ&P 760℃ (15 min) 280℃ 350℃(15 min) - Water quenching
IQ&T 760℃ (15 min) 25℃ - 400℃(30 min) Air cooling
Q&T 900℃ (30 min) 25℃ - 450℃(30 min) Air cooling
Table 1  Heat treatment parameters (temperature (T) and time (t)) of different treatments
Process Pm Pf Pa dm df da E1 E2 E3 E2+E3 KV2
(kN) (kN) (kN) (mm) (mm) (mm) (J) (J) (J) (J) (J)
IQ&P 9.3 5.8 1.8 2.3 2.9 5.3 17.4 4.4 12.3 16.6 34
IQ&T 10.2 9.2 1.3 1.5 1.9 5.1 12 3.6 16.5 20 32
Q&T 11.3 10.5 0.8 1.4 1.6 4.3 10.8 1.7 10.4 12.2 23
Table 2  Instrumented Charpy impact values of the IQ&P, IQ&T, and Q&T steel
Fig.3  SEM images of samples after (a) IQ&P, (b) IQ&T, and Q&T treatments (RA/UM is retained austenite or untempered martensite, B is bainite, IF is intercritical ferrite, TM is tempered martensite)
Fig.4  Curves of load and absorb energy KV2 vs hammer diaplacement obtained in the instrumented Impact teasts energy for the samples after (a) IQ&P, (b) IQ&T, and Q&T treatments (E1—crack forming energy, E2—crack propagation energy, E3—energy absorbed during brittle fracture, Pm—maximum impact load, Pf—brittle fracture start load, Pa—brittle fracture arrested load, dm, df and da are the harmmer displacement of the charpy impact fracture course at impact load of Pm, Pf, and Pa, respectively)
Property Process Rm(MPa) Rp0.2(MPa) YR Agt(%) A(%) Rm×A (MPa·%)
IQ&P 1010 752 0.74 21 30 30300
IQ&T 1052 743 0.71 9.5 20 21040
Q&T 1028 950 0.92 6.0 16 16448
Table 3  Tensile properties of samples after IQ&P, IQ&T and Q&T treatment
Fig.5  Plot of instantaneous strain hardening as a founction of true strain for the IQ&P, IQ&T and Q&T steel
Fig.6  XRD patterns of the IQ&P steel under different (a) impact and (b) tensile deformations
1 J. Kang, C. Wang, G. D. Wang,Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment, Materials Science and Engineering A, 553, 96(2012)
2 KANG Yonglin,WANG Bo, Structure and property of TRIP plate and its control process, Journal of iron and steel research, 11(3), 62(1999)
2 (康永林, 王 波, TRIP 钢板的组织、性能与工艺控制, 钢铁研究学报, 11(3), 62(1999))
3 C. Herrera, D. Ponge, D. Raabe,Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia, 42, 1059(2002)
4 Y. Sakuma, O. Matsumura, H. Takechi,Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions, Metallurgical Transactions A, 22(2), 489(1991)
5 B. C. De. Cooman,Structure-properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science, 8, 285(2004)
6 M. Mukherjee, O. N. Mohanty, S. I. Hashimoto, T. Hojo, K. I. Sugimoto,Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure, ISIJ International, 46(2), 316(2006)
7 G. A. Thomas, J. G. Speer, D. K. Matlock,Quenched and Partitioned Microstructures Produced via Gleeble Simulations of Hot-Strip Mill Cooling Practices, Metallurgical and Materials TransactionsA, 42(12), 3652(2011)
8 REN Yongqiang,XIE Zhenjia, SHANG Chengjia, Microstructure regulation and mechanical properties of low-carbon multiphase steels, Journal of university of science and technology Beijing, 35(5), 592(2013)
8 (任勇强, 谢振家, 尚成嘉, 低碳多相钢的组织调控与力学性能, 北京科技大学学报, 35(5), 592(2013))
9 D. V. Edmonds, K. He, F. C. Rizzo, B. C. De. Cooman, D. K. Matlock, J. G. Speer,Quenching and partitioning martensite-a novel steel heat treatment, Materials Science and Engineering A, 438, 25(2006)
10 M. J. Santofimia, L. Zhao, R. Petrov, J. Sietsma,Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon stell, Materials Characterization, 59(12), 1758(2008)
11 M. J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma,New low carbon Q&P steels containing film-like intercritical ferrite, Materials Science and Engineering A, 527, 6429(2010)
12 M. J. Santofimia, L. Zhao, J. Sietsma,Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metallurgical and Materials Transactions A, 40, 46(2009)
13 J. Chiang, B. Lawrence, J. D. Boyd, A. K. Pilkey,Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Materials Science and Engineering A, 528(13-14), 4516(2011)
14 Y. Sakuma, D. K. Matlock, G. Krauss,Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part I. Transformation, microstructure, and room-temperature mechanical properties, Metallurgical Transactions A, 23, 1221(1992)
15 LIU Dongyu, XU Hong, YANG Kun, BAI Bingzhe, FANG Hongsheng, Effect of bainite/matensite mixed microstructure on the strength and toughness of low carbon alloy steels, 40(8), 882(2004)
15 (刘东雨, 徐 鸿, 杨 昆, 白秉哲, 方鸿生, 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响, 金属学报, 40(8), 882(2004))
16 LIU Dongsheng,CHENG Binggui, LUO Mi, Microstructure and impact fracture behaviour of HAZ of F460 heavy ship plate with high strength and toughness, Acta metallurgica sinica, 47(10), 1233(2011)
16 (刘东升, 程丙贵, 罗 咪, F460高强韧厚船板焊接热影响区的组织和冲击断裂行为, 金属学报, 47(10), 1233(2011))
17 Y. Sakuma, O. Matsumura, O. Akisue,Influence of C Content and Annealing Temperature on Microstructure and Mechanical Properties of Transformed Steel Contained Retained Austenite, ISIJ International, 31(9), 1348(1991)
18 DONG Han,WANG Maoqiu, WENG Yuqing, Performance improvement of steels through M3 structure control, Iron and steel, 45(7), 1(2010)
18 (董 瀚, 王毛球, 翁宇庆, 高性能钢的M3组织调控理论与技术, 钢铁, 45(7), 1(2010))
19 P. Jacques, X. Cornet, P. Harlet, J. Ladriere,Enhancement of the Mechanical Properties of a Low-Carbon, Low-Silicon Steel by Formation of a Multiphased Microstructure Containing Retained Austenite, Metallurgical and Materials Transactions A, 29, 2383(1998)
20 O. Yakubovsky, N. Fonstein, D. Bhattacharya, in Proceedings of international conference on TRIP-adied high strength ferrous alloys, Stress-strain behavior and bake hardening of TRIP and TRIP aided multiphase steels, edited by B. C. De Cooman(Aachen, Wissenschaftsverlag Mainz Gmbh, 2002)p. 263
21 C. Herrera, D. Ponge, D. Raabe,Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia, 59(11), 4653(2011)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!